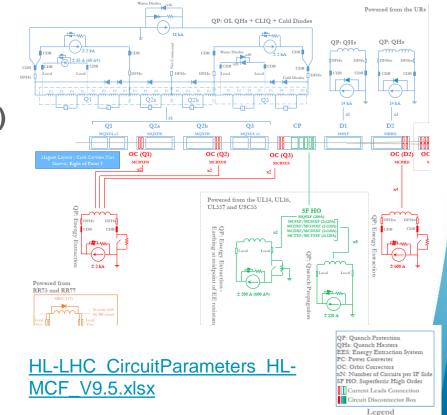


Overview of WP6A electrical requirements and instrumentation

J. Fleiter on behalf of WP6a

Outline

- Current rating and dielectric insulation of circuits
- Current leads naming and attribution to circuits
- Current leads heating system
- Instrumentation of WP6a
 - Electric protection of circuits
 - Cryogenic
 - Vacuum
- Instrumentation feedthrough system of SC Link
- Instrumentation splitting modules of SC Link


Current rating of electrical circuits of WP6a

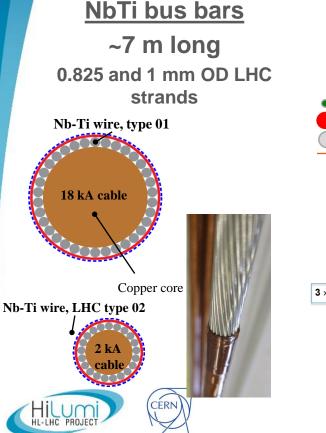
Inner triplets (9 circuits)

- MQXF main 2 x 18 kA
- MQXF trim 3 x 2 kA (3x7 kA AC)
- D1 2 x 18 kA
- MCBXF 12 X 2 kA

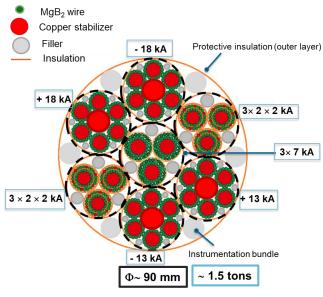
Matching Section (5 circuits)

- D2 2 x 18 kA
- MCBRD 8 x 0.6 kA

12th Annual HL LHC meeting 19-22 Sept 2022


Circuits Layout Version 3.4

Operating temperature of cold powering systems


- Operating temperature
 - 4.5 K Nb-Ti bus bars, NbTi/NbTi splices, MgB₂/NbTi splices
 - 4.5 17 K MgB₂ cable (~100 m long)
 - 17 -50 K HTS cables
 - 50-300 K Resistive heat exchanger of leads
 - 300 K Warm terminal of current leads
- Cooling scheme (LHe or GHe)
 - DFX => LHe, 4.5 K @ 1-2 bar
 - Sc Link, DFHX and current leads => GHe 5-300 K @ 1-2 bar

Sc cables of cold powering systems

MgB₂ cables ~70-140 m long 1 mm OD strands

IT MgB_2 cable assembly

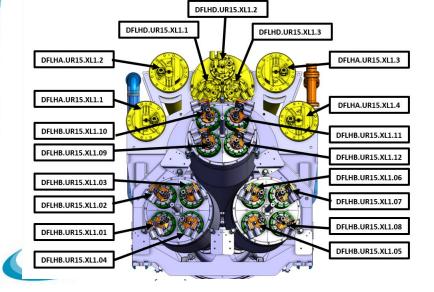
HTS cables <u>~3 m long</u> REBCO tapes 4 mm x 0.01 mm

3 kA sub cable

Electrical Insulation and transients

- Electrical components (Sc cables, Instrumentation, splices...) designed and produced to fulfill circuit insulation and transient requirements.
- Dielectric insulation of components tested prior to installation.

EDMS 1821907


Rating (kA)	Worst case voltage to ground during operation (V)	Acceptanc compo to grou	onents	Insulation te sys to grou		Leakage current per component (µA)	Test duration (s) 30 30 30 30		
		RT	NOC	RT	NOC				
18	900	4600	2300	460	1080	≤10	30		
7	900	4600	2300	460	1080	≤10	30		
2	540	3160 1580		316 648		≤10	30		
$RT \rightarrow Room Temperature NOC \rightarrow He gas @ RT, 1 bar$									

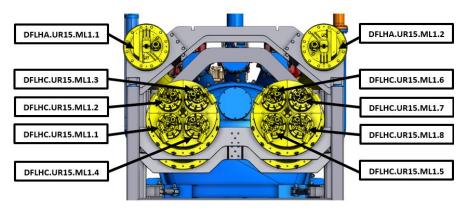
EDMS 1821907

	Rating (kA)	MIITs (MA²⋅s)	dl/dt (kA/s)	τ _n (no quench of magnets)	τ _q (quench of magnets) (s)	Equivalent time (s)
	18 (*)	32	250	(s) 130	0.2	0.1
	7	5	250	130	0.2	0.12
HL-LHC PRO	2 (**)	1	20	20	0.5	

Current lead position codes and circuit assignments IT

- Position codes and circuit assignments defined in EDMS 2450769
- Naming follows the general rules for naming of HL-LHC equipment

Current lead assignment for Inner Triplets of Point Left 1


Current lead assignment for Inner Triplets of Point 1

Current lead functional position code	Туре	Circuit assignment	Current lead functional position code	Туре	Circuit assignment
DFLHA.UR15.XL1.1	Α	RQX.L1.NEG	DFLHA.UR15.XR1.1	Α	RQX.R1. NEG
DFLHA.UR15.XL1.2	В	RQX.L1.POS	DFLHA.UR15.XR1.2	В	RQX.R1. POS
DFLHA.UR15.XL1.3	В	RD1.L1. NEG	DFLHA.UR15.XR1.3	Α	RD1.R1. NEG
DFLHA.UR15.XL1.4	Α	RD1.L1. POS	DFLHA.UR15.XR1.4	В	RD1.R1. POS
DFLHD.UR15.XL1.1	В	RTQX1.L1. POS	DFLHD.UR15.XR1.1	В	RTQX1.R1. POS
DFLHD.UR15.XL1.2	NC	Not connected	DFLHD.UR15.XR1.2	NC	Not connected
DFLHD.UR15.XL1.3	Α	RTQX3.L1. NEG	DFLHD.UR15.XR1.3	Α	RTQX3.R1. NEG
DFLHB.UR15.XL1.01	Α	RCBXV1.L1. POS	DFLHB.UR15.XR1.01	Α	RCBXV1.R1. NEG
DFLHB.UR15.XL1.02	В	RCBXV1.L1. NEG	DFLHB.UR15.XR1.02	В	RCBXV1.R1. POS
DFLHB.UR15.XL1.03	Α	RCBXH1.L1. NEG	DFLHB.UR15.XR1.03	Α	RCBXH1.R1. NEG
DFLHB.UR15.XL1.04	В	RCBXH1.L1. POS	DFLHB.UR15.XR1.04	В	RCBXH1.R1. POS
DFLHB.UR15.XL1.05	Α	RCBXV2.L1. NEG	DFLHB.UR15.XR1.05	А	RCBXV2.R1. POS
DFLHB.UR15.XL1.06	В	RCBXV2.L1. POS	DFLHB.UR15.XR1.06	В	RCBXV2.R1. NEG
DFLHB.UR15.XL1.07	Α	RCBXH2.L1. NEG	DFLHB.UR15.XR1.07	Α	RCBXH2.R1. NEG
DFLHB.UR15.XL1.08	В	RCBXH2.L1. POS	DFLHB.UR15.XR1.08	В	RCBXH2.R1. POS
DFLHB.UR15.XL1.09	Α	RCBXV3.L1. POS	DFLHB.UR15.XR1.09	Α	RCBXV3.R1. NEG
DFLHB.UR15.XL1.10	В	RCBXV3.L1. NEG	DFLHB.UR15.XR1.10	В	RCBXV3.R1. POS
DFLHB.UR15.XL1.11	А	RCBXH3.L1. NEG	DFLHB.UR15.XR1.11	Α	RCBXH3.R1. NEG
DFLHB.UR15.XL1.12	В	RCBXH3.L1. POS	DFLHB.UR15.XR1.12	В	RCBXH3.R1. POS

Current lead position codes and circuit assignments MS

- Position codes and circuit assignments defined in EDMS 2450769
- Naming follows the general rules for naming of HL-LHC equipment

Current lead assignment for Matching Sections of L1

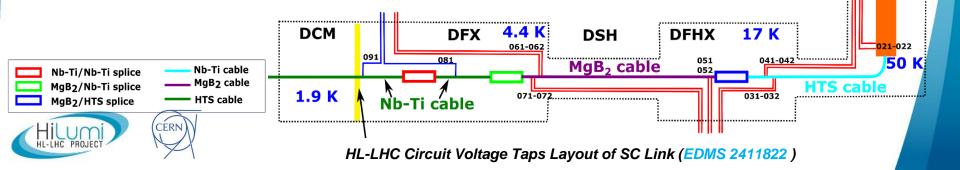
Current lead assignment for Matching Sections of P1

Current lead functional position code	Туре	Circuit assignment	Current lead functional position code	Туре	Circuit assignment
DFLHA.UR15.ML1.1	Α	RD2.L1.NEG	DFLHA.UR15.MR1.1	Α	RD2.R1.POS
DFLHA.UR15.ML1.2	В	RD2.L1.POS	DFLHA.UR15.MR1.2	В	RD2.R1.NEG
DFLHC.UR15.ML1.1	А	RCBRDV4.L1B1.POS	DFLHC.UR15.MR1.1	А	RCBRDV4.R1B1.NEG
DFLHC.UR15.ML1.2	В	RCBRDV4.L1B1.NEG	DFLHC.UR15.MR1.2	В	RCBRDV4.R1B1.POS
DFLHC.UR15.ML1.3	А	RCBRDH4.L1B1.NEG	DFLHC.UR15.MR1.3	А	RCBRDH4.R1B1.NEG
DFLHC.UR15.ML1.4	В	RCBRDH4.L1B1.POS	DFLHC.UR15.MR1.4	В	RCBRDH4.R1B1.POS
DFLHC.UR15.ML1.5	Α	RCBRDV4.L1B2.POS	DFLHC.UR15.MR1.5	Α	RCBRDV4.R1B2.NEG
DFLHC.UR15.ML1.6	В	RCBRDV4.L1B2.NEG	DFLHC.UR15.MR1.6	В	RCBRDV4.R1B2.POS
DFLHC.UR15.ML1.7	Α	RCBRDH4.L1B2.POS	DFLHC.UR15.MR1.7	Α	RCBRDH4.R1B2.POS
DFLHC.UR15.ML1.8	В	RCBRDH4.L1B2.NEG	DFLHC.UR15.MR1.8	В	RCBRDH4.R1B2.NEG

SC Link electrical instrumentation

- Each Sc Link equipped with specific instrumentation for a safe and controlled operation:
 - Electrical protection of circuits
 - Cryogenic control
 - Vacuum control

- Instrumentation of each Sc Link defined in :
 - Matching section EDMS 2512704
 - Inner Triplet EDMS 2591698

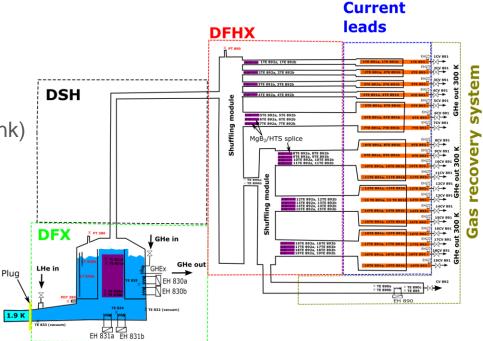


Current leads DFHX DSH STE 892a, STE 892b 6TE 892a, 6TE 892b 7TE 892a, 6TE 892b MaB₃/HTS splice Ĩ 8TE 892a, 8TE 892b 9TE 892a, 9TE 892b 10TE 892a, 10TE 892i 12TE 8924, 12TE 892b 13TE 8924, 13TE 892b 14TE 8924, 13TE 892b DFX GHe ir 14TE 892a, 16TE 892b 17TE 892a, 17TE 892b 17TE 892a, 17TE 892b 18TE 892a, 18TE 892b GHe ou LHe in Plug EH 830a × TE 890a we × TE 890c -1.9 K EH 831a EH 831b

Layout of CRG instrumentation (more details in next slides)

SC Link electrical instrumentation

- Each branch of circuits equipped with 16 Vtaps for the protection and monitoring of: Current lead heat exchanger, SC cables (HTS, MgB₂, NbTi), **Splices** (HTS/MgB₂, MgB₂/NbTi and NbTi/NbTi)
- Same layout of Vtaps for all branches of circuits (0.6-18 kA)
- Naming of Vtaps defined in EDMS 2512704 and 2591698: a unique ID of Vtaps defined for each system based on the ID of branch of circuit and the Current Lead position along the branch. "<EE> <ID of the branch > <Position >" e.g. EEA011, EES091 ...


300 K

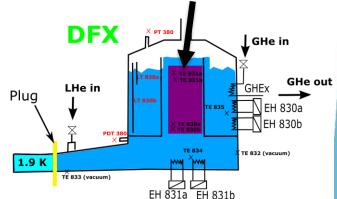
011-012

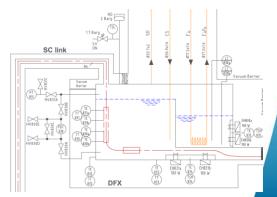
SC Link cryogenic instrumentation

- For a safe operation of SC Link system, during nominal operation but also during transients, dedicated instrumentation is required:
 - Temperature transducers
 - LHe level gages
 - Pressure gages
 - Heaters
 - He control valves (not part of SC Link)
- More details in next slides

P&I Diagram of IT String =>EDMS 2244008 Engineering Specification: Instrumentation of the Cold Powering System EDMS 2512704 and 2591698

Cryogenic instrumentation of DFX

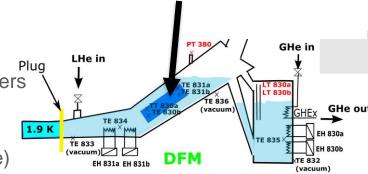

Cryogenic instrumentation of DFX :


- 8 Thermal transducers (TT)
 - 2 in vacuum attached to He vessel (Cernox)
 - 4 in the splice box (He vessel) (Cernox)
 - 2 temperature sensors attached to the resistive heaters Plug

5 Heaters

- 1 GHe/LHe Heat exchanger
- 2 resistive Heaters in external bath
- 2 resistive Heaters in the lower bath
- I He pressure gage
- 1 He delta P gage to measure level of liquid in the fountain
- Two LHe level transducers
- Cryo control valves are part of cryo jumper

Cryogenic instrumentation of DFM

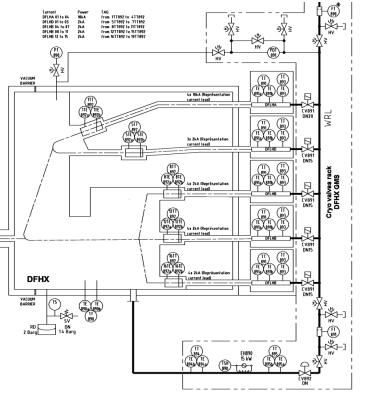

Cryogenic instrumentation of DFM :

- 9 Thermal transducers (TT)
 - 3 in vacuum attached to He vessel (Cernox)
 - 4 in the splice box (He vessel) (Cernox)
 - 2 temperature sensors attached to the resistive heaters

5 Heaters

- 1 GHe/LHe Heat exchanger
- 2 resistive Heaters in external bath (includes 1 spare)
- 2 resistive heater in the lower bath (includes 1 spare)
- I He pressure gage
- Two LHe level transducers
- Cryo control valves are part of cryo jumper

Splice box (MgB₂/Nb-Ti)

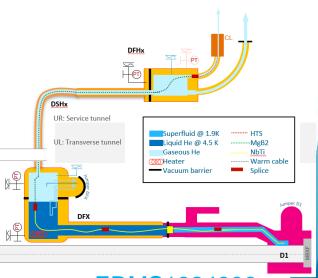

Cryogenic instrumentation of DFH and leads

Instrumentation of DFH

- 1 active and 1 spare Thermal Transducers (TT) Cernox per MgB₂/HTS splice
- 1 active and 1 spare Thermal Transducers (TT) Cernox In GHe
- 1 He pressure gage, external to He tank

Instrumentation of current leads

 Two active and one spare Thermal transducers (PT 100) per current lead

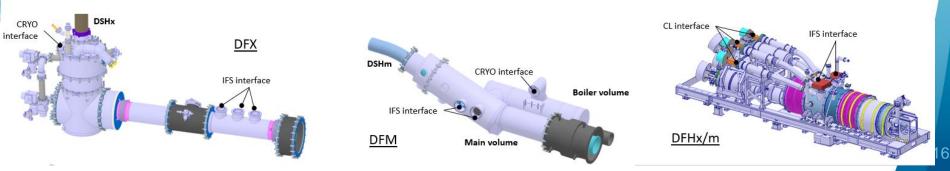


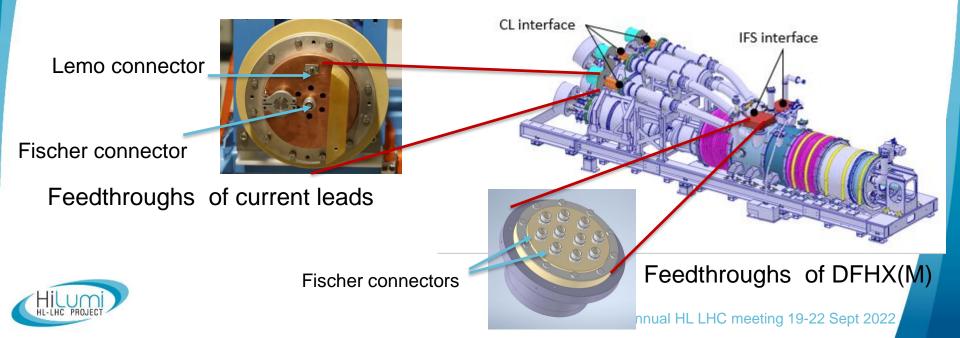
HL-LHC IT STRING SQXL - P&I DIAGRAM, EDMS 2244008

Vacuum instrumentation

The cold powering chain of each SC Link system is made of three vacuum volumes as defined in EDMS1824906: DFX(M), DSH and DFHX(M)

- The DFX(M) and DFHX(M) vacuum vessels will be equipped with vacuum ports (EDMS 2157597) use to plug pumping units and/or vacuum instrumentation
- All the vacuum instrumentation (Pirani, Penning and membrane gauge) will be external to the DFX vacuum vessel (attached to ports)
- => no wiring in the vessel for vacuum instrumentation is required

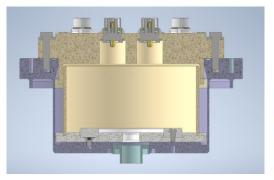


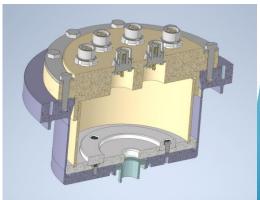

Instrumentation Feedthroughs of SC-Link systems

- Feedthroughs located at three specific locations:
 - **DFX(M)**: Vtaps, temp probes, LHe level gage and heaters
 - **DFHX(M)**: Vtaps and temp probes
 - Current leads: Vtaps and temp probes
- Instrumentation feedthrough systems of WP6a designed, constructed and tested accordingly to voltage requirements EDMS 1821907

Instrumentation Feedthroughs of DFHX(M) and current leads

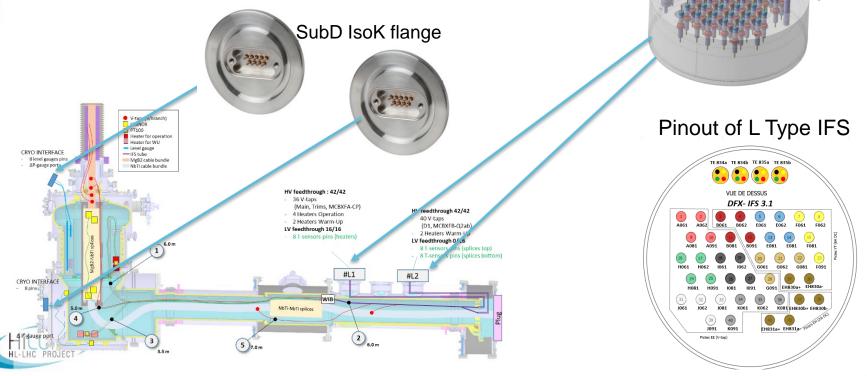
- Each HL-LHC Current leads equipped with one Fischer connector and a 4 pin Lemo connector as for LHC
- Feedthroughs of DFHX(M) composed of multiple Fischer connectors (one connector per branch of circuit, Vtaps and TT) mounted on an insulating flange.




Design of feedthroughs of DFHX(M)

- Vtaps and TT equipping same branch of circuits regrouped in dedicated connector (same electrical potential ~+/- 10 V in transients)
- TT of GHe regrouped on a separate connector
- A total of 20 connectors required for DFHX, 11 connectors for DFHM
- Leak tight Connectors of type Fischer S105A058 distributed among two insulated flanges (PEEK, with O-ring seal)
- Connector insulation (in air) :Pin to pin 1.6 kV, Pin to body 1.4 kV
- Clearance and creepage distance between body of connectors (14 mm air, 56(66) mm Ghe)

MCF meeting #105, June 2022, https://indico.cern.ch/event/1170478/



Instrumentation Feedthrough of DFX

L Type IFS of DFX

Feedthroughs of DFX(M):

- HL-LHC cryo-magnet IFS (L-Type)
- SubD connector mounted on Iso-K flange for LHe level gage
- SubD connector mounted on Iso-K flange for TT in vacuum

Heating system for current leads

- For a safe operation of the HL-LHC current leads, each of them will be equipped with a dedicated heating system to avoid the formation of condensation and ice that would lead to gas leakage or degradation of HTS current leads.
- Functional specification defined in EDMS 2770173
- Each heating system shall:
 - Maintain the warm terminal of the leads to 300 K (+/- 3 K) during the entire operational cycle of machine
 - Set point could be monitored and changed remotely
 - Provide sufficient dielectric insulation to HL LHC circuits (~3 kV)
 - Deliver a power (48V) ranging between 125 W and 1.8 kW
 - Being made of components quickly replaced with reliable connectors
 - Restart and get back in control mode after power cut
 - Having appropriate electrical protection to limit shut down only to faulty elements/components

Connection to power cable

Cartridge Heater

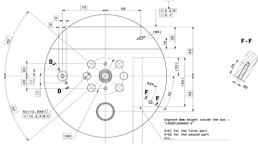
Vacuum vesse

Main hea exchange

50 K

Terminal

HTS cable


Resistive heaters for the current leads

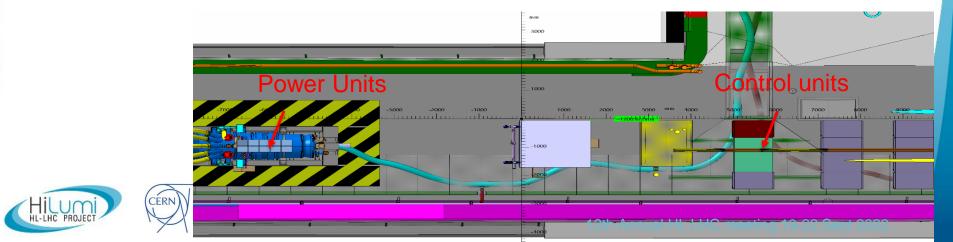
	Type of lead	Number of leads per system	Technical drawing of warm terminal of the leads	Diameter of cartridge heater	Length of cartridg e heater	Numbe r of cartrid ge heater per lead	Power and voltage of each Heater
	18 kA	4	LHCDFLHA0002	12.5 mm	100 mm	6	300 W/ 48 V
Inner Triplet	7 kA	3	LHCDFLHBP0025	6.5 mm	50 mm	2	125 W/48 V
	2 kA	12	LHCDFLHBP0025	6.5 mm	50 mm	2	125 W/48 V
Matching	18 kA	2	LHCDFLHA0002	12.5 mm	100 mm	6	300 W/ 48 V
Section	0.6 kA	8	LHCDFLHBC0001	6.5 mm	50 mm	1	125 W/48 V

8×017 0.1A Ba0.8/ © 0.05 B 8191 <u>* ...</u>E + 00.05 B

18 kA lead warm terminal

0

More details on the Heating system of the leads in presentation of G. D'Angelo.



Integration of Heating system in the HL-LHC machine

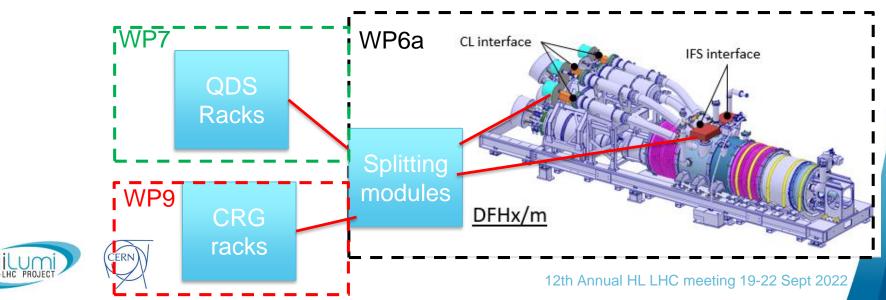
Integration of components :

- Power units next by current leads, installed on top of the DFHX and DFHM in individual box
- Resistive heaters mounted on current leads, with wiring running of cable trays installed on top of the DFHX and DFHM
- Control units installed ~15 m from the current leads in dedicated racks

THERMOSWITCH of CURRENT LEADS

Each current lead will be equipped with a thermoswitch that will triger a discharge of the circuit if temperature of lead is exceeding 60 degC in operation

- The type chosen is open by raising temperature.
- They are insensitive to shocks, accelerations and vibrations.
- Dielectric holding between the HTS C.L. and the inner parts of the thermostat: 3.5 kV
- Nominal voltage : 250V
- Nominal current : 6A
- Signals from Thermoswitch will be collected by the means of a dedicated proximity equipment:
 - 19 Thermoswitch for IT
 - 10 Thermoswitch for MS


SPLITTING MODULES OF SC LINK

- External splitting module (proximity equipment) are required to route in dedicated cables instrumentation signal of Sc Link to cryo and electrical protection racks
- Splitting modules will be located close by the DFHX(M) and DFX
 - Splitting module of DFX/DFM under responsibility of WP7 (see presentation of G. D'Angelo
 - Splitting module of DFHX/M under responsibility of WP6a, described in next slides

SPLITTING MODULES OF DFHX AND DFHM

- Instrumentation cables of CL and IFS of DFHX(M) will be collected in the proximity equipment
- Connectors of Proximity equipment: Harting type
- Interface among WP at the level of output connectors of splitting modules
- One proximity equipment for four branch of circuits: 5 PE for IT, 3 PE for MS
- Functional spec of proximity equipment drafted in Sept 2022.

Splitting modules of DFHX and DFHM

- Specification drafted in Sept 2022, that defines for each connector (input and output):
 - Connector ID
 - Type of connector
 - Type of cable
 - Pinout

Pinout of output connector for CRYO

			Source si	gnal	Conn PE-XCRG-01			
	Sensor ID	Signal	Conn ID	PIN	Туре	Con. Pin ID	Cab. con. ID	
	1TE892a	U+	PE X4-01	7	62	V+	1	
	1TE892a	U-	PE X4-01	8	960	V-	2	
	1TE892a	l+	PE X4-01	9	ö	l+	3	
	1TE892a	I-	PE X4-01	10	Ň	I-	4	
	1TE892b	U+	PE X4-01	11	÷.	V+	5	
	1TE892b	U-	PE X4-01	12	200	V-	6	
	1TE892b	l+	PE X4-01	13	Cable: 09 16 072 3001, EMC: 816 0301	l+	7	
	1TE892b	I-	PE X4-01	14		I-	8	
	1TE891a	U+	PE X5-01	7		V+	9	
	1TE891a	U-	PE X5-01	8	330 : 06	V-	10	
	1TE891a	l+	PE X5-01	9		l+	11	
	1TE891a	I-	PE X5-01	10		I-	12	
	1TE891b	U+	PE X5-01	11		V+	13	
	1TE891b	U-	PE X5-01	12	3101,	V-	14	
	1TE891b	l+	PE X5-01	13	72	l+	15	
	1TE891b	I-	PE X5-01	14	0 9	I-	16	
	1TE893	U+	PE X6-01	1	6	V+	17	
L	1TE893	U-	PE X6-01	2	0 0	V-	18	
H	1TE893	l+	PE X6-01	3	Rack: 09 16 072	l+	19	
-	1TE893	I-	PE X6-01	4	£	I-	20	

List of output connectors of the splitting module of DFHM List of output connectors of the splitting module of DFHM

		S	Signals	Conne	ctor ID	
Vtaps/ Temperatre sensors	Current leads/ leg of circuit	Nb of wires for Vtaps	Nb of wires for Temp probe	Connector ID	Connector Type	Cable
	DFLHA.URM1	-	20	PE-MCRG-1	<u> </u>	
	DFLHA.URM2	-	20	PE-MCRG-2	3101 2 3001 5 0301	
	DFLHC.URM1	-	20	PE-MCRG-3		
	DFLHC.URM2	-	20	PE-MCRG-4	Rack: 09 16 072 able : 09 16 072 EMC: 09 62 816	
	DFLHC.URM3	-	20	PE-MCRG-5	16 0 16 0 16 0	20x
Temp	DFLHC.URM4	-	20	PE-MCRG-6	60 03 03	
	DFLHC.URM5	-	20	PE-MCRG-7	Rack: 0 cable :: EMC:	DRAK
	DFLHC.URM6	-	20	PE-MCRG-8	EVE	A HV
	DFLHC.URM7	-	20	PE-MCRG-9	<u> </u>	
	DFLHC.URM8	-	20	PE-MCRG-10	×	
	None (TT832A/TT832B)	-	8	PE-MCRG-11	7	
	DFLHA.URM1 DFLHA.URM2	16	-	PE-MMPE-01a	<u>1</u>	NE36
		16	-	PE-MMPE-01b	- 016 0371 008 3101 016 0318	NE36
	DFLHC.URM1 DFLHC.UR .M .2	32	-	PE-MMPE-02a	14 01 30 0,000	NE36
Vtaps	DFLHC.URM3 DFLHC.URM4	32	-	PE-MMPE-02b	60 80 80 80 80 80 80 80 80 80 80 80 80 80	NE36
	DFLHC.URM5 DFLHC.UR .M .6	32	-	PE-MMPE-03a	× = 4 =	NE36
	DFLHC.URM7 DFLHC.URM8	32	-	PE-MMPE-03b	ê	NE36

Conclusion

- Current leads named and attributed to circuits
- List of instrumentation for safe cryogenic, electrical and vacuum operation of the SC Links system defined
- Instrumentation feedthroughs of SC Link defined
- The functional specification for current leads heating system was defined, it is developed by WP7.
- Safety thermoswitch will equip each HTS current lead that will cut off the power converter if the temperature reaches 60°C.
- Splitting module for DFX(M) and DFHX(M) are being designed. The one of DFX(M) is with WP7. Interfaces are defined, the detail design of DFHX(M) splitting module will be completed by Q2 2023.

Thanks for your attention

