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Introduction (I)
Jet energy resolution has three main 
contributions:

 E 
E

~ a

E
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E
c

- Stochastic response:
  Jet fragmentation
  Sampling fluctuations,
  EM fraction fluctuations per hadron.

- Electronic noise term

- Constant term:
  Dead material, magnetic field,
  calorimeter non-compensation.

- Absolute jet energy scale:
   denominator in sigma(E)/E.

Given a particle-jet energy, what is the
distribution of the jet energy measured in
the calorimeter. Does not include the 
contribution of particles outside the cone 
at particle-level. 

Resolution must be measured in the data,
where there is no access to particle-jets: investigate data-driven techniques.

Jet resolution is crucial in many physics analysis and searches:
investigate ways to improve it.
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Jet Energy Resolution (Dijet balance)
Determination of the jet Et resolution based on energy conservation
in the transverse plane.

- 1 primary vertex.
- 2 back-to-back leading jets (DeltaPhi<2.8)
- No other reconstructed jet with Et>10 GeV.
- Both jets in the same Eta region. 
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Additional corrections:
 - Imbalance due to additional jets below the 10 GeV 

   threshold and soft radiation in the event.
- Particle jet imbalance contribution.

Jet 1

Jet 2
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Data sample divided in 4 p
T
 regions, and 4 eta regions.

Asymmetry variables fitted with single Gaussians. 

Dijet balance: Asymmetry Distributions
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Non Gaussian tails in the highest pT bin.

Dijet balance: Asymmetry Distributions
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Dijet balance Resolution (Eta<0.8)
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Soft Radiation Correction (I)
Events with soft radiation prevent the two leading jets from balancing in 
the transverse plane.
  Compute resolutions in samples with different third jet cuts: 15,20,25,30,40 GeV
  Extrapolate to p

T
=0 (ideal Dijet sample)
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Soft Radiation Correction (II)

K PT =
 pT
pT


th=0GeV

/
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K PT =1−exp
a−b pT

Soft radiation bias should be larger 
at small transverse energies, and 
negligible at high p

T
:
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Resolution after Soft Radiation Correction
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Kt Balance Technique
Method used in CDF, developed by UA2.

Project Imbalance vector kT onto 
2 components (psi, eta)

- Eta axis: azimuthal angular bisector of
   the dijet system.
- Psi axis: orthogonal to Eta axis.

Psi, and Eta components are sensitive to 
different effects:

Psi distribution: jet energy resolution – gluon radiation.
Eta distribution: jet angular resolution – gluon radiation. 

Remove soft radiation contribution by subtracting in quadrature 
sigma(Eta) from sigma(Psi)

Reject events with a third 
jet to reduce hard gluon 
radiation effects
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Data sample divided in 4 p
T
 regions, and 4 eta regions.

Psi and Eta variables fitted with single Gaussians. 

Distributions of the 2 kT Components
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Eta resolution has weaker dependence with energy, as expected.

Distributions of the 2 kT Components
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Width of Psi component has an approximately linear dependence with sqrt(pT)
Width of Eta component is more flat, specially at high pT.

Resolution of the 2 kT components 
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Very preliminary.
Kt technique gives smaller resolution at low pT.

Comparison of Dijet and Kt 
Balance Methods

Dijet balance kT
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Compare calorimeter jets with particle jets (straight resolution)
DeltaR(jet,particle)<0.1
Within 1% for pT>200 GeV. Large discrepancies at low pT. 

Monte Carlo Closure Test
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Tracking provides and independent
measurement of energy that can be
used to improve the energy resolution.

Match Cone 0.4 calorimeter jets
with reconstructed tracks:

DeltaR(PV)<0.4
pT> 0.5 GeV

Consider the fraction of charged
transverse momentum in jets:

Look at the energy scale of cal-jets
as a function of the charged particle
composition, and “correct” for differences in scale.

Improving Jet Resolution using Tracks 

f trk=
ET
trk

ET
cal
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Track selection studies in progress: remove poorly measured and high E tracks

Track Distributions in Jets
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Significant Cal-Jet energy scale differences as a function of ET fraction.  

Jet Resolution vs Charged ET fraction
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The Cal Jet resolution width can be improved if jets with different f_trk are
calibrated such that they have the same energy scale.

Jet Resolution vs Charged ET fraction
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Significant energy scale dependence at low ET (<150 GeV)
Most of the energy shift comes from f_trk>0.5

Jet Response vs. Charged ET fraction 
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Fit Jet Energy Response for each f_trk, and derive a track-based response
correction: R(Ecal,Etrk)

Jet Energy Scale Correction using Tracks

REcal , Etrk =ab f trkTanH 
Ecal

cd f trk
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Track+Jet Energy Resolution 
Improvement

Jet Resolution is improved because jets with with different charged fraction 
are corrected to the same energy scale, reducing the overall width.
More than 15% relative improvement at 50 GeV.
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Summary and Plans
- First look at 2 data-driven techniques to determine jet energy 
  resolutions: Dijet balance, kT.

Differences between both methods at low transverse energy.

Closure test shows that the application of both methods over-estimate
the jet resolution at low transverse energy (under investigation)

- Developed an algorithm to improve the jet energy resolution using 
  track information.
 The gain is due to the proper calibration of jets as a function of its 

charged particle energy content, measured with the tracker 
(15% @ 50 GeV)

The next step is to explore the use of correlations between different 
track variables (to account for jet fragmentation fluctuations) and to
optimize the track selection.


