Jet Energy Resolution and Improvements

> Ariel Schwartzman SLAC, Stanford University

SLAC ATLAS Forum, 24-Jan-2007

Introduction (I)

Jet energy resolution has three main contributions:

$$\frac{\sigma(E)}{E} \sim \frac{a}{\sqrt{(E)}} \oplus \frac{b}{E} \oplus c$$

Given a particle-jet energy, what is the distribution of the jet energy measured in the calorimeter. Does not include the contribution of particles outside the cone at particle-level. Stochastic response: *Jet fragmentation* Sampling fluctuations, EM fraction fluctuations per hadron.

- Electronic noise term

- Constant term: *Dead material, magnetic field,* calorimeter non-compensation.

 Absolute jet energy scale: denominator in sigma(E)/E.

Resolution must be *measured* in the data, where there is no access to particle-jets: investigate data-driven techniques.

Jet resolution is crucial in many physics analysis and searches: investigate ways to *improve* it.

Jet Energy Resolution (Dijet balance)

Determination of the jet Et resolution based on energy conservation in the transverse plane.

- 1 primary vertex.
- 2 back-to-back leading jets (DeltaPhi<2.8)
- No other reconstructed jet with Et>10 GeV.
- Both jets in the same Eta region.

3

Dijet balance: Asymmetry Distributions

Data sample divided in 4 p_T regions, and 4 eta regions. Asymmetry variables fitted with single Gaussians.

Dijet balance: Asymmetry Distributions

Non Gaussian tails in the highest pT bin.

Dijet balance Resolution (Eta<0.8)

Soft Radiation Correction (I)

Events with soft radiation prevent the two leading jets from balancing in the transverse plane.

Compute resolutions in samples with different third jet cuts: 15,20,25,30,40 GeV Extrapolate to $p_T=0$ (ideal Dijet sample)

Soft Radiation Correction (II)

$$K(P_T) = \left(\frac{\sigma p_T}{p_T}\right)^{th = 0 \, GeV} / \left(\frac{\sigma p_T}{p_T}\right)^{th = 10 \, GeV}$$
$$\left(\frac{\sigma p_T}{p_T}\right) = K x \left(\frac{\sigma p_T}{p_T}\right)^{th = 10 \, GeV}$$

Soft radiation bias should be larger at small transverse energies, and negligible at high p_T :

$$K(P_T) = 1 - \exp^{a - b p_T}$$

Resolution after Soft Radiation Correction

Kt Balance Technique

Remove soft radiation contribution by subtracting in quadrature sigma(Eta) from sigma(Psi)

Distributions of the 2 kT Components

Data sample divided in 4 p_T regions, and 4 eta regions. Psi and Eta variables fitted with single Gaussians.

Distributions of the 2 kT Components

Eta resolution has weaker dependence with energy, as expected.

Resolution of the 2 kT components

Width of Psi component has an approximately linear dependence with sqrt(pT) Width of Eta component is more flat, specially at high pT.

Comparison of Dijet and Kt Balance Methods

Very preliminary. Kt technique gives smaller resolution at low pT.

Monte Carlo Closure Test

0.0 < |η| < 0.8

Compare calorimeter jets with particle jets (straight resolution) DeltaR(jet,particle)<0.1 Within 1% for pT>200 GeV. Large discrepancies at low pT.

Improving Jet Resolution using Tracks

Tracking provides and independent measurement of energy that can be used to improve the energy resolution.

Match Cone 0.4 calorimeter jets with reconstructed tracks: DeltaR(PV)<0.4 pT> 0.5 GeV

Consider the fraction of charged transverse momentum in jets:

$$f_{trk} = \frac{E_T^{trk}}{E_T^{cal}}$$

Look at the energy scale of cal-jets as a function of the charged particle composition, and "correct" for differences in scale.

Track Distributions in Jets

Track selection studies in progress: remove poorly measured and high E tracks

Jet Resolution vs Charged ET fraction

Significant Cal-Jet energy scale differences as a function of ET fraction.

Jet Resolution vs Charged ET fraction

The Cal Jet resolution width can be improved if jets with different f_trk are calibrated such that they have the same energy scale.

Jet Response vs. Charged ET fraction

Significant energy scale dependence at low ET (<150 GeV) Most of the energy shift comes from f_trk>0.5

Jet Energy Scale Correction using Tracks

Fit Jet Energy Response for each f_trk, and derive a track-based response correction: R(Ecal,Etrk)

Track+Jet Energy Resolution Improvement

Jet Resolution is improved because jets with with different charged fraction are corrected to the same energy scale, reducing the overall width. More than 15% relative improvement at 50 GeV.

Summary and Plans

- First look at 2 data-driven techniques to determine jet energy resolutions: Dijet balance, kT.

Differences between both methods at low transverse energy.

Closure test shows that the application of both methods over-estimate the jet resolution at low transverse energy (under investigation)

- Developed an algorithm to improve the jet energy resolution using track information.

The gain is due to the proper calibration of jets as a function of its charged particle energy content, measured with the tracker (15% @ 50 GeV)

The next step is to explore the use of correlations between different track variables (to account for jet fragmentation fluctuations) and to optimize the track selection. 23