Running from the ALPs in SMEFT

Sophie Renner University of Glasgow

Based on work with A. Galda, M. Neubert 2105.01078

HEFT 2022, Granada

Why axion like particles (ALPs)?

MODEL-BUILDING MOTIVATIONS:

Any dynamics with a spontaneously broken approximate global symmetry will produce light spinless particles

Many motivated explicit models: e.g. QCD axion, dark sector models, flavon models, composite Higgs models,

Why ALPs? Motivations II

MODEL-INDEPENDENT MOTIVATIONS:

One or more light ($m \leq v$) BSM particles?

Outline of talk

ALP EFT at dimension five and six

How ALP loops can affect the RGEs of SMEFT-like operators

Overview and features of new source terms for the RGEs

Directions for applications and phenomenology

ALP EFT to dimension 5

Don't need to know the details of the UV physics to study the ALP

Then the parameter space of the model depends on $m_a, f, (\mathbf{c}_F), c_{XX}$

ALP EFT vs SMEFT

This extra d.o.f has large effects at dim 5:

SMEFT at dim 5: $\mathscr{L}_{SMEFT}^{(d=5)} = \frac{c_5}{\Lambda} HHLL + h \cdot c \,.$ ALP at dim 5:

+ ALP couplings to all SM fields (prev. slide)

...But doesn't change much at dim 6:

SMEFT at dim 6: 2499 parameters (for B and L conserving) ALP at dim 6: + $c_{aH}(H^{\dagger}H)(\partial_{\mu}a)(\partial^{\mu}a)$

Seeing the ALP in SMEFT-like operators

Within an ALP theory, different ways of getting contributions to dim 6 operators:

Galda, SR, Neubert, 2105.01078

e.g. contributions to RG of $H^{\dagger}H\,W^{I}_{\mu\nu}W^{I\mu\nu}$

Calculating the RG source terms

We use the equivalent Lagrangian

ALP vertices are of the form:

T7

Use basis of dim 6 operators which is complete *before* using EOM relations ("Green's Basis")

Then can calculate 1PI diagrams to find the counterterms

In a final step, use EOMs to get back to the Warsaw basis

Green's basis and all EOM relations: Gherardi, Marzocca, Venturini 2008.09548

$\propto C_{GG}^2$
$\propto C_{WW}^2$
$\propto C_{BB}^2$
$\propto \tilde{Y}^2$
$\propto \tilde{Y}C_{XX}$
$\propto C_{WW}C_{BB}$

Almost every operator in Warsaw basis is sourced by the ALP!

Galda, SR, Neubert, 2105.01078

	$1: X^{3}$	$2: H^{6}$	$3: H^4$	D^2	$5:\psi^2H^3+{\rm h.c.}$	
Q_G	$f^{ABC}G^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho}$	$Q_H \left[(H^{\dagger}H)^3 \right]$	$Q_{H\Box}$ $(H^{\dagger}H)$	$(H^{\dagger}H)$	Q_{eH}	$(H^{\dagger}H)(\bar{l}_{p}e_{r}H)$
$Q_{\widetilde{G}}$	$f^{ABC} \widetilde{G}^{A\nu}_{\mu} G^{B\rho}_{\nu} G^{C\mu}_{\rho}$	($Q_{HD} \mid (H^{\dagger}D_{\mu}H)$	$H\Big)^*\left(H^\dagger D_\mu H\right)$	Q_{uH}	$(H^{\dagger}H)(\bar{q}_{p}u_{r})$
Q_W	$\epsilon^{IJK}W^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$				Q_{dH}	$(H^{\dagger}H)(\bar{q}_{p}d_{r})$
$Q_{\widetilde{W}}$	$\epsilon^{IJK}\widetilde{W}^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$					
$4: X^{2}H^{2}$		$6:\psi^2 XH +$	h.c.	$-$ 7 : ψ^2		
Q_{HG}	$H^{\dagger}HG^{A}_{\mu\nu}G^{A\mu\nu}$	Q_{eW} $(\bar{l}_p \sigma^{\mu\nu} e_r)$	$ au^{I}HW^{I}_{\mu u}$	$Q_{Hl}^{(1)}$	$\left (H^{\dagger}i\overleftrightarrow{D}\right $	$_{\mu}H)(\bar{l}_{p}\gamma^{\mu}l_{r})$
$Q_{H \widetilde{G}}$	$H^{\dagger}H\widetilde{G}^{A}_{\mu\nu}G^{A\mu\nu}$	Q_{eB} $(\bar{l}_p \sigma^{\mu\nu} e_r)$	$(HB_{\mu\nu})$	$Q_{Hl}^{(3)}$	$\left (H^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}$	$H)(\bar{l}_p \tau^I \gamma^\mu l_r)$
Q_{HW}	$H^{\dagger}H W^{I}_{\mu\nu} W^{I\mu\nu}$	$Q_{uG} \left[\left(\bar{q}_p \sigma^{\mu\nu} T^A \right) \right]$	$(u_r)\widetilde{H}G^A_{\mu u}$	Q_{He}	$(H^{\dagger}i\overleftrightarrow{D}_{\mu})$	$_{\iota}H)(\bar{e}_{p}\gamma^{\mu}e_{r})$
$Q_{H\widetilde{W}}$	$H^{\dagger}H\widetilde{W}^{I}_{\mu\nu}W^{I\mu\nu}$	$Q_{uW} \mid (\bar{q}_p \sigma^{\mu\nu} u_r)$	$ au^{I} \widetilde{H} W^{I}_{\mu u}$	$Q_{Hq}^{\left(1 ight)}$	$\left (H^{\dagger}i\overleftrightarrow{D}_{\mu}) \right $	$_{\iota}H)(\bar{q}_{p}\gamma^{\mu}q_{r})$
Q_{HB}	$H^{\dagger}HB_{\mu u}B^{\mu u}$	Q_{uB} $(\bar{q}_p \sigma^{\mu\nu} u_r$	$(H)\widetilde{H} B_{\mu\nu}$	$Q_{Hq}^{(3)}$	$\left (H^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}) \right $	$H)(\bar{q}_p\tau^I\gamma^\mu q_r$
$Q_{H\widetilde{B}}$	$H^{\dagger}H\widetilde{B}_{\mu u}B^{\mu u}$	$Q_{dG} \mid (\bar{q}_p \sigma^{\mu\nu} T^A)$	$d_r)HG^A_{\mu u}$	Q_{Hu}	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}$	$(\bar{u}_p \gamma^\mu u_r)$
Q_{HWB}	$H^{\dagger}\tau^{I}HW^{I}_{\mu\nu}B^{\mu\nu}$	$Q_{dW} \left[\left(\bar{q}_p \sigma^{\mu\nu} d_r \right) \right]$	$ au^{I}HW^{I}_{\mu u}$	Q_{Hd}	$(H^{\dagger}i\overleftrightarrow{D}_{\mu})$	$_{\iota}H)(\bar{d}_{p}\gamma^{\mu}d_{r})$
$Q_{H\widetilde{W}B}$	$H^{\dagger}\tau^{I}H\widetilde{W}^{I}_{\mu\nu}B^{\mu\nu}$	Q_{dB} $(\bar{q}_p \sigma^{\mu\nu} d_r)$	$(H B_{\mu\nu})$	$Q_{Hud} + { m h.c.}$	$i(\widetilde{H}^{\dagger}D_{\mu}$	$H)(\bar{u}_p\gamma^\mu d_r)$
	$8:(\bar{L}L)(\bar{L}L)$	8:(I	$(\bar{R}R)(\bar{R}R)$		$8:(\bar{L}L)($	$(\bar{R}R)$
Q_{ll}	$(\bar{l}_p \gamma_\mu l_r) (\bar{l}_s \gamma^\mu l_t)$	Q_{ee} $(\bar{e}_p$	$\gamma_{\mu}e_{r})(\bar{e}_{s}\gamma^{\mu}e_{t})$	Q_{le}	$(ar{l}_p \gamma_\mu l_r$	$(\bar{e}_s \gamma^\mu e_t)$
$Q_{qq}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r) (\bar{q}_s \gamma^\mu q_t)$	Q_{uu} (\bar{u}_p)	$\gamma_{\mu}u_r)(\bar{u}_s\gamma^{\mu}u_t)$	Q_{lu}	$(\bar{l}_p \gamma_\mu l_r$	$)(\bar{u}_s\gamma^{\mu}u_t)$
$Q_{qq}^{(3)}$	$(\bar{q}_p \gamma_\mu \tau^I q_r) (\bar{q}_s \gamma^\mu \tau^I q_r)$	(\bar{d}_p)	$\gamma_{\mu}d_{r})(ar{d}_{s}\gamma^{\mu}d_{t})$.	Q_{ld}	$(\bar{l}_p \gamma_\mu l_r$	$(\bar{d}_s \gamma^\mu d_t)$
$Q_{lq}^{(1)}$	$(\bar{l}_p \gamma_\mu l_r) (\bar{q}_s \gamma^\mu q_t)$	Q_{eu} $(\bar{e}_{p'})$	$\gamma_{\mu}e_{r})(\bar{u}_{s}\gamma^{\mu}u_{t})$	Q_{qe}	$(ar{q}_p\gamma_\mu q_p)$	$_{r})(\bar{e}_{s}\gamma^{\mu}e_{t})$
$Q_{la}^{(3)}$	$(\bar{l}_p \gamma_\mu \tau^I l_r) (\bar{q}_s \gamma^\mu \tau^I q$	(\bar{e}_p)	$\gamma_{\mu}e_{r})(\bar{d}_{s}\gamma^{\mu}d_{t})$	$Q_{qu}^{(1)}$	$(\bar{q}_p \gamma_\mu q_p)$	$(\bar{u}_s \gamma^\mu u_t)$
****		$Q_{ud}^{(1)}$ (\bar{u}_p)	$\gamma_{\mu}u_r)(\bar{d}_s\gamma^{\mu}d_t)$	$Q_{qu}^{(8)}$	$(\bar{q}_p \gamma_\mu T^A q_p)$	$(\bar{u}_s \gamma^\mu T^A u)$
		$Q_{ud}^{(8)} \mid (\bar{u}_p \gamma_\mu T)$	$(T^A u_r)(\bar{d}_s \gamma^\mu T^A d)$	(t) $Q_{ad}^{(1)}$	$(\bar{q}_p \gamma_\mu q_p)$	$(\bar{d}_s \gamma^\mu d_t)$
		•••••••		$Q_{ad}^{(8)}$	$(\bar{q}_p \gamma_\mu T^A q_p)$	$(\bar{d}_s \gamma^\mu T^A d)$
	8:(LR)	(RL) + h.c.	8:(LR)(LR)	(k) + h.c.	_	
	Q_{ledq}	$(l_p^j e_r)(d_s q_{tj})$ Q	$\left(\bar{q}_{p}^{j} u_{r} \right) $	$\epsilon_{jk}(\bar{q}_s^k d_t)$		
		Q	$\left[\begin{array}{c} (\circ) \\ quqd \end{array} \right] \left[\left(\bar{q}_p^j T^A u_r \right) \right]$	$\epsilon_{jk}(\bar{q}_s^k T^A d_t)$		
		Q	$(\bar{l}_{p}^{j}e_{r})$	$\epsilon_{jk}(\bar{q}_s^k u_t)$		
		Q	$\left \begin{smallmatrix} (3) \\ lequ \end{smallmatrix} \right \left(\bar{l}_p^j \sigma_{\mu\nu} e_r \right)$	$\epsilon_{jk}(\bar{q}_s^k\sigma^{\mu\nu}u_t)$)	

Patterns and structure

ALP-boson interactions appear in many places via EOMs

$$\widehat{Q}_{W,2} \cong \frac{g_2^2}{4} \left(H^{\dagger} i \overleftrightarrow{D}_{\mu}^{I} H + \bar{Q} \gamma_{\mu} \sigma^{I} Q + \bar{L} \gamma_{\mu} \sigma^{I} L \right)^2$$

$$= \frac{g_2^2}{4} \left(-4m_H^2 (H^{\dagger} H)^2 + 4\lambda Q_H + 3Q_{H\square} + 2 \left([Q_{Hl}^{(3)}]_{pp} + [Q_{Hq}^{(3)}]_{pp} \right) \right)$$

$$= \frac{g_2^2}{4} \left[-4m_H^2 (H^{\dagger} H)^2 + 4\lambda Q_H + 3Q_{H\square} + 2 \left([Q_{Hl}^{(3)}]_{pp} + [Q_{Hq}^{(3)}]_{pp} \right) \right]$$

$$= \frac{g_2^2}{4} \left[-4m_H^2 (H^{\dagger} H)^2 + 4\lambda Q_H + 3Q_{H\square} + 2 \left([Q_{Hl}^{(3)}]_{pp} + [Q_{Hq}^{(3)}]_{pp} \right) \right]$$

$$= \frac{g_2^2}{4} \left[-4m_H^2 (H^{\dagger} H)^2 + 4\lambda Q_H + 3Q_{H\square} + 2 \left([Q_{Hl}^{(3)}]_{pp} + [Q_{Hq}^{(3)}]_{pp} \right) \right]$$

$$= \frac{g_2^2}{4} \left[-4m_H^2 (H^{\dagger} H)^2 + 4\lambda Q_H + 3Q_{H\square} + 2 \left([Q_{Hl}^{(3)}]_{pp} + [Q_{Hq}^{(3)}]_{pp} \right) \right]$$

$$= \frac{g_2^2}{4} \left[-4m_H^2 (H^{\dagger} H)^2 + 4\lambda Q_H + 3Q_{H\square} + 2 \left([Q_{Hl}^{(3)}]_{pp} + [Q_{Hq}^{(3)}]_{pp} \right) \right]$$

$$= \frac{g_2^2}{4} \left[-4m_H^2 (H^{\dagger} H)^2 + 4\lambda Q_H + 3Q_{H\square} + 2 \left([Q_{Hl}^{(3)}]_{pp} + [Q_{Hl}^{(3)}]_{pp} \right) \right]$$

$$= \frac{g_2^2}{4} \left[-4m_H^2 (H^{\dagger} H)^2 + 4\lambda Q_H + 3Q_{H\square} + 2 \left([Q_{Hl}^{(3)}]_{pp} + [Q_{Hl}^{(3)}]_{pp} \right) \right]$$

$$= \frac{g_2^2}{4} \left[-4m_H^2 (H^{\dagger} H)^2 + 4\lambda Q_H + 3Q_{H\square} + 2 \left([Q_{Hl}^{(3)}]_{pp} + [Q_{Hl}^{(3)}]_{pp} \right) \right]$$

$$= \frac{g_2^2}{4} \left[-4m_H^2 (H^{\dagger} H)^2 + 4\lambda Q_H + 3Q_{H\square} + 2 \left([Q_{Hl}^{(3)}]_{pp} + [Q_{Hl}^{(3)}]_{pp} \right] \right]$$

$$= \frac{g_2^2}{4} \left[-4m_H^2 (H^{\dagger} H)^2 + 4\lambda Q_H + 3Q_{H\square} + 2 \left([Q_{Hl}^{(3)}]_{pp} + [Q_{Hl}^{(3)}]_{pp} \right] \right]$$

$$= \frac{g_2^2}{4} \left[-4m_H^2 (H^{\dagger} H)^2 + 4\lambda Q_H + 3Q_{H\square} + 2 \left([Q_{Hl}^{(3)}]_{pp} + [Q_{Hl}^{(3)}]_{pp} \right] \right]$$

$$= \frac{g_2^2}{4} \left[-4m_H^2 (H^{\dagger} H)^2 + 4\lambda Q_H + 3Q_{H\square} + 2 \left([Q_{Hl}^{(3)}]_{pp} + [Q_{Hl}^{(3)}]_{pp} \right] \right]$$

$$= \frac{g_2^2}{4} \left[-4m_H^2 (H^{\dagger} H)^2 + 4\lambda Q_H + 3Q_{H\square} + 2 \left([Q_{Hl}^{(3)}]_{pp} + [Q_{Hl}^{(3)}]_{pp} \right] \right]$$

$$= \frac{g_2^2}{4} \left[-4m_H^2 (H^{\dagger} H)^2 + 4\lambda Q_H + 3Q_{H\square} + 2 \left([Q_{Hl}^{(3)}]_{pp} + [Q_{Hl}^{(3)}]_{pp} \right] \right]$$

$$= \frac{g_2^2}{4} \left[-4m_H^2 (H^{\dagger} H)^2 + 4\lambda Q_H + 4\lambda Q_H + 4Q_{H} + 2 \left([Q_{Hl}^{(3)}]_{pp} \right] \right]$$

$$= \frac{g_2^2}{4} \left[-4m_H^2 (H^{\dagger} H)^2 + 4\lambda Q_H + 4\lambda Q_H + 4Q_{H} + 4Q_{H} + 4M_{H} \right] \right]$$

$$= \frac{g_2^2}{4} \left[-4m_H^2 (H^{\dagger} H)^2 + 4\lambda Q_H + 4M_{H} + 4M_$$

The presence of the ALP can change conclusions c.f. SMEFT-only running

e.g. in SMEFT, X^3 operators are only self-renormalised: Helicity argument for why: Cheung, Shen, 1505,01844

$$\dot{C}_G = (12c_{A,3} - 3b_{0,3}) g_3^2 C_G$$

 $\dot{C}_W = (12c_{A,2} - 3b_{0,2}) g_2^2 C_W$ \implies if zero at Λ , zero at m_W (to 1-loop)

Alonso, Jenkins, Manohar, Trott 1312.2014

But in ALP EFT, same operators are renormalised by ALP-boson interactions: e.g. $\frac{d}{d \ln \mu} C_G(\mu) \ni \frac{8g_s}{(4\pi f)^2} C_{GG}^2 \implies$ unavoidable in an ALP theory if $C_{GG} \neq 0$

Searching for new physics

Where will the effects of ALP-induced running be important?

Many SMEFT operators only generated at loop level by weakly coupled UV

completions

Einhorn, Wudka 1307.0478 Craig, Jiang, Li, Sutherland 2001.00017

e.g. dipole operators, 3 field strength operators

see Chala, Guedes, Ramos, Santiago 2012.09017 for ALP-induced RG of dipole operators <u>below</u> EW scale

Best way to discover ALPs: when they can be produced on-shell

Constraints found in this way depend strongly on ALP mass and decay modes/width

But contributions to SMEFT operators are

~mass independent (if $m_a < m_W$)

Maybe can use them to fill in gaps?

Other ALP mass & width independent constraints from non-resonant searches: Gavela, No, Sanz, de Trocóniz 1905.12953, Carrà et al. 2106.10085, Bonilla, Brivio, Machado-Rodríguez, de Trocóniz 2202.03450

Pheno and applications: $\hat{\mu}_t$

Top chromomagnetic dipole moment

Pheno and applications: EWPTs

Z-pole measurements constrain SMEFT very strongly...

e.g. (first 2 generations): $-0.11 \,\mathrm{TeV}^{-2} < C_{Hq}^{(3)} < 0.012 \,\mathrm{TeV}^{-2}$ (95% CL)

marginalised bound from Ellis, Madigan, Mimasu, Sanz, You 2012.02779

ALP contribution:

$$C_{Hq}^{(3)} \approx -\frac{\alpha}{3\pi \sin^2 \theta_w} \frac{C_{WW}^2}{f^2} \ln \frac{4\pi f}{m_Z} \implies ||C_{WW}| \times \left[\frac{1 \text{ TeV}}{f}\right] < 2.50 \quad (95\% \text{ CL})$$

Competitive with LEP diphoton constraints for ALPs between 10 MeV - 10 GeV

A combined/global fit should do much better

All these operators receive
contributions
$$\propto C_{WW}^2$$
: $Q_W \mid \epsilon^{IJK} W^{I\nu}_{\mu} W^{J\rho}_{\nu} W^{K\mu}_{\rho}$ $Q_{qq}^{(3)} \mid (\bar{q}_p \gamma_\mu \tau^I q_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$
 $Q_{HW} \mid H^{\dagger} H W^{I}_{\mu\nu} W^{I\mu\nu}$ $Q_{H\Box} \mid (H^{\dagger} H) \Box (H^{\dagger} H)$ $Q_{Hl}^{(3)} \mid (H^{\dagger} i \overleftrightarrow{D}_{\mu}^{I} H) (\bar{l}_p \tau^I \gamma^\mu l_r)$
 $Q_{eH} \mid (H^{\dagger} H) (\bar{l}_p e_r H)$ $Q_H \mid (H^{\dagger} H)^3$ $Q_{Hq}^{(3)} \mid (H^{\dagger} i \overleftrightarrow{D}_{\mu}^{I} H) (\bar{q}_p \tau^I \gamma^\mu q_r)$
 $Q_{uH} \mid (H^{\dagger} H) (\bar{q}_p u_r \widetilde{H})$ $Q_{lq}^{(3)} \mid (\bar{l}_p \gamma_\mu \tau^I l_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$ $Q_{ll} \mid (\bar{l}_p \gamma_\mu l_r) (\bar{l}_s \gamma^\mu l_t)$

Conclusions & thoughts

ALPs are well-motivated and well studied options for BSM physics

ALP EFT includes SMEFT-like operators, and ALP loops affect their RGEs

In general, very few options for a light neutral particle (RH neutrinos, ALPs, dark photon, ...)

By including them in the EFT and calculating their effects, gain:

- a) More robust/general EFT
- b) New indirect probes of light new physics through dim 6 operators

Backup

Lagrangians

$$\mathcal{L}_{\rm SM+ALP}^{D=5} = c_{GG} \frac{\alpha_s}{4\pi} \frac{a}{f} G^a_{\mu\nu} \tilde{G}^{\mu\nu,a} + c_{WW} \frac{\alpha_2}{4\pi} \frac{a}{f} W^I_{\mu\nu} \tilde{W}^{\mu\nu,I} + c_{BB} \frac{\alpha_1}{4\pi} \frac{a}{f} B_{\mu\nu} \tilde{B}^{\mu\nu} + \frac{\partial^{\mu}a}{f} \sum_F \bar{\psi}_F \boldsymbol{c}_F \gamma_{\mu} \psi_F.$$

$$\mathcal{L}_{\rm SM+ALP}^{D=5\,\prime} = C_{GG} \,\frac{a}{f} \,G_{\mu\nu}^a \,\tilde{G}^{\mu\nu,a} + C_{WW} \,\frac{a}{f} \,W_{\mu\nu}^I \,\tilde{W}^{\mu\nu,I} + C_{BB} \,\frac{a}{f} \,B_{\mu\nu} \,\tilde{B}^{\mu\nu} \\ - \frac{a}{f} \left(\bar{Q}\tilde{H}\,\tilde{Y}_u \,u_R + \bar{Q}H\,\tilde{Y}_d \,d_R + \bar{L}H\,\tilde{Y}_e \,e_R + \text{h.c.} \right),$$

$$\widetilde{\boldsymbol{Y}}_{u} = i \left(\boldsymbol{Y}_{u} \, \boldsymbol{c}_{u} - \boldsymbol{c}_{Q} \boldsymbol{Y}_{u} \right), \qquad \widetilde{\boldsymbol{Y}}_{d} = i \left(\boldsymbol{Y}_{d} \, \boldsymbol{c}_{d} - \boldsymbol{c}_{Q} \boldsymbol{Y}_{d} \right), \qquad \widetilde{\boldsymbol{Y}}_{e} = i \left(\boldsymbol{Y}_{e} \, \boldsymbol{c}_{e} - \boldsymbol{c}_{L} \boldsymbol{Y}_{e} \right). \tag{5}$$

Note the important fact that the ALP–boson couplings in (3) are also affected by the field redefinitions. One finds

$$C_{GG} = \frac{\alpha_s}{4\pi} \left[c_{GG} + \frac{1}{2} \operatorname{Tr} \left(\boldsymbol{c}_d + \boldsymbol{c}_u - 2\boldsymbol{c}_Q \right) \right] \equiv \frac{\alpha_s}{4\pi} \tilde{c}_{GG} ,$$

$$C_{WW} = \frac{\alpha_2}{4\pi} \left[c_{WW} - \frac{1}{2} \operatorname{Tr} \left(N_c \boldsymbol{c}_Q + \boldsymbol{c}_L \right) \right] \equiv \frac{\alpha_2}{4\pi} \tilde{c}_{WW} ,$$

$$C_{BB} = \frac{\alpha_1}{4\pi} \left[c_{BB} + \operatorname{Tr} \left[N_c \left(\mathcal{Y}_d^2 \, \boldsymbol{c}_d + \mathcal{Y}_u^2 \, \boldsymbol{c}_u - 2 \, \mathcal{Y}_Q^2 \, \boldsymbol{c}_Q \right) + \mathcal{Y}_e^2 \, \boldsymbol{c}_e - 2 \, \mathcal{Y}_L^2 \, \boldsymbol{c}_L \right] \right] \equiv \frac{\alpha_1}{4\pi} \tilde{c}_{BB} ,$$

$$(6)$$

ALP affecting dim 4 running

 $\frac{d\lambda}{d\ln\mu} = -\frac{16g_2^2}{3} \frac{m_H^2}{(4\pi f)^2} C_{WW}^2 + \text{SM contribution}$

$$\beta^{(3)}(\{\alpha_i\}) = \beta^{(3)}_{\rm SM}(\{\alpha_i\}) + \frac{8m_a^2}{(4\pi f)^2} C_{GG}^2,$$

$$\beta^{(2)}(\{\alpha_i\}) = \beta^{(2)}_{\rm SM}(\{\alpha_i\}) + \frac{8m_a^2}{(4\pi f)^2} C_{WW}^2,$$

$$\beta^{(1)}(\{\alpha_i\}) = \beta^{(1)}_{\rm SM}(\{\alpha_i\}) + \frac{8m_a^2}{(4\pi f)^2} C_{BB}^2.$$

1 loop RG above EW scale

RGEs for the lepton couplings are highly analogous!