

VBS Measurements at CMS & constraints on SMEFT operators

Antonio Vagnerini (Univ./INFN Torino)

On behalf of the CMS Collaboration

Higgs and Effective Field Theory - HEFT 15/06/2021

• This is a **VBS summary talk** of the most recent **CMS measurements**

- **results** obtained with the **full Run 2 data (137fb⁻¹)**
- Several final states presented:
 - **fully-leptonic** : $W^{\pm}W^{\pm} \rightarrow 2I2\nu$; $WZ \rightarrow 3I\nu$; $ZZ \rightarrow 4I$; $W^{+}W^{-} \rightarrow 2I2\nu$
 - semi-leptonic: WW/WZ→lvjj;
 - with **photons**: $Z\gamma \rightarrow 2l\gamma$; $W\gamma \rightarrow 2l\gamma$
- Inclusive/differential cross-section measurements
- EFT interpretation and latest constraints on dim-8 SMEFT operators
- Sensitivity study on VBS+WW combination to dim-6 SMEFT operators
- **Prospects** for VV scattering measurements with the CMS detector

Motivation for VV scattering measurements

 q_{f2}

- EW process probing the non-Abelian nature of SM:
 - direct access to triple/quartic gauge couplings (TGC/QGC)
 - **sensitive** to **couplings** between **Higgs** and **gauge** bosons
 - complementary to Higgs measurements at scales > m_H

• Portal to BSM physics:

Phys.Rev.D 74 (2006) 073005

 q_{i1}

- **model-independent** via Effective Field Theories (EFTs)
 - 18 bosonic operators in dim-8 EFT tested
 - set constraints on anomalous gauge couplings, aQGCs

W scattering at the LHC

- Event topology:
 - 2 vector bosons produced centrally
 - **2 energetic tagging jets** emitted back-to-back
- Signature based on diboson final states:
 - **fully leptonic:** 4 e/µ ; 2 jets
 - **semi-leptonic/hadronic:** 1or 2 e/µ ; 4 jets
 - o fully-hadronic: 4 or 6 jets
- Irreducible **tree-level contributions** to the final state:
 - **EW = O(α⁶_{EW}) signal** component
 - QCD= O($\alpha_{EW}^4 \alpha_s^2$) bkg suppressed in high $m_{jj}^2 |\Delta \eta_{jj}|$ region
 - INT = O(α⁵_{EW}α_s) term: ~O(%) of the signal

VBS W⁺W⁻ \rightarrow 2l2 ν

CMS-PAS-SMP-21-001

- **OS WW fully leptonic** largest cross-section
 - but large irreducible QCD-induced bkg process
- Event categories based on flavour of lepton pair different/same flavour: eµ(DF) vs ee/µµ(SF)
- **DNN** discriminant used in **DF signal region** while **SF region** sub-divided in m_{ii} - $\Delta \eta_{ii}$ bins splitted by best var Zeppenfeld

$$Z_{\ell_i} = \eta_{\ell_i} - \frac{1}{2}(\eta_{j_1} + \eta_{j_2})$$

First observation of **WW EWK** process: **5.6σ** significance

VBS W[±]W[±] \rightarrow 2l[±]2 ν

CMS, Phys. Lett. B 809, 135710 (2020)

- Same-sign WW fully leptonic is a "golden channel"
 - good separation EW/QCD components σ_{EW}/σ_{OCD}~4-6
 - full tower of NLO corrections known
- Simultaneous measurement of W[±]/WZ production
 - advantage in definition signal/control region
- Data-driven estimation of non-prompt background
- Cross section measurement:
 - **inclusive** xsec from fit to the 2D **m_{ii},-m_{ii}**, plane
 - o **differential** in **m_{jj}, m_{ll}, p_{T,I1}**
- Stringent limits on **dim-8 EFT** operators from **m_T(WW**)

VBS WZ \rightarrow 3l1 ν

- WZjj production has clean 3-lepton signature • larger QCD bkg contribution since σ_{EW}/σ_{QCD} ~1/2
- BDT with lepton/jet kinematic as input variables
 sensitivity improvement wrt 2D fit by 20%

• Analysis methods in common with **W[±]W[±]**

Process	$\sigma \mathcal{B}$ (fb)	Theoretical prediction without NLO corrections (fb)	Theoretical prediction with NLO corrections (fb)	
$EW W^\pm W^\pm$	3.98 ± 0.45 $0.37 ({\rm stat}) \pm 0.25 ({\rm syst})$	3.93 ± 0.57	3.31 ± 0.47	
EW+QCD $W^{\pm}W^{\pm}$	4.42 ± 0.47 $0.39 ({ m stat}) \pm 0.25 ({ m syst})$	4.34 ± 0.69	3.72 ± 0.59	
EW WZ	1.81 ± 0.41 $0.39({ m stat}) \pm 0.14({ m syst})$	1.41 ± 0.21	1.24 ± 0.18	
EW+QCD WZ	4.97 ± 0.46 $0.40 ({ m stat}) \pm 0.23 ({ m syst})$	4.54 ± 0.90	4.36 ± 0.88	
QCD WZ	3.15 ± 0.49 $0.45 ({ m stat}) \pm 0.18 ({ m syst})$	3.12 ± 0.70	3.12 ± 0.70	

Constraints on **dim-8 EFT** operators from **m_τ(WZ**)

VBS $W^{\pm}W^{\pm} \rightarrow 2l^{\pm}2\nu$ Polarisation

- First measurement of **polarization states** in VBS **W[±]W[±]**
 - **challenging** since **low** expected **yields** for **W**₁**W**₁
 - four-momentum of W-boson unknown
 - no direct access to helicity angles
- Similar strategy but different variables in BDT training
 separately for WW & parton-parton rest frame
- **Two-dimensional fit** of two BDT output scores
 - **inclusive**: optimised to isolate EW WW from bkg
 - **signal** : designed to select **W**_L**W**_L or **W**_L**W**_x against other polarisation states
- Obs(exp) 2.6(2.9)σ significance for EW W_LW_x production and 95% U.L. of 1.17(0.88) fb for W_LW_L

8

- One of the rarest SM processes observed to date:
 - **4l+2j clean channel** with two l[±]l[∓] pairs
 - **NLO QCD correction available** matched to PS
- Evidence of EW ZZjj production at 4.0σ
- Matrix element analysis with discriminant K_D
 to better distinguish signal from QCD ZZ (main bkg)
- Fiducial cross-section in 3 regions differing in EW-purity
- Constraints on **dim-8 EFT** operators (T8,T9)
 - from **m(4l)** involving only neutral fields

Phys. Lett. B 812, 135992 (2021)

	Perturbative order	SM σ (fb)	Measured σ (fb)				
ZZjj inclusive							
EW	LO NLO QCD	$\begin{array}{c} 0.275 \pm 0.021 \\ 0.278 \pm 0.017 \\ 0.242 ^{+0.015} \end{array}$	$0.33^{+0.11}_{-0.10}({ m stat})^{+0.04}_{-0.03}({ m syst})$				
EW+QCD	NLO EVV	$0.242_{-0.013}$ 5.35 ± 0.51	$5.29^{+0.31}_{-0.30}({ m stat})\pm 0.47({ m syst})$				
	VBS-	enriched (loose)					
EW EW+QCD	LO NLO QCD	$\begin{array}{c} 0.186 \pm 0.015 \\ 0.197 \pm 0.013 \\ 1.21 \pm 0.09 \end{array}$	$0.180^{+0.070}_{-0.060} ({ m stat})^{+0.021}_{-0.012} ({ m syst})$ $1.00^{+0.12}_{-0.11} ({ m stat}) \pm 0.07 ({ m syst})$				
VBS-enriched (tight)							
EW	LO NLO QCD	$\begin{array}{c} 0.104 \pm 0.008 \\ 0.108 \pm 0.007 \end{array}$	$0.09^{+0.04}_{-0.03}({ m stat})\pm 0.02({ m syst})$				
EW+QCD		0.221 ± 0.014	$0.20^{+0.05}_{-0.04}({ m stat})\pm 0.02({ m syst})$				
CMS 137 fb ⁻¹ (13 TeV)							

VBS WW/WZ \rightarrow $l\nu jj$

CMS-SMP-20-013 arXiv:2112.05259v1

VV+VVV

VBS-W(lv)V(jj)

0.6

Top

0.4

 $L = 138 \text{ fb}^{-1} (13 \text{ TeV})$

VBF-V, Vy, VBS-Z(II)V(jj)

- Two vector bosons: W→e/µv and V ≡W/Z →qq
 - large hadronic BR(V→qq) compensates for high irreducible background
 - either two jets (resolved category) or one merged jet (boosted)

DNN boosted

0.8

Observed (expected) **4.4(5.1)σ** significance for EW WV production

CMS VBS $Z\gamma \rightarrow 2l\gamma$

- VBS Z_γ → 2l_γ Z_γ→l[±]l[∓] γ relatively clean signature • except QCD-induced bkg
- Data-driven estimation non-prompt background
 - **2D m**_{jj},-**m**_{ll}, distributions used for EW signal fit
- Obs (exp) 9.4(8.5)σ significance for EW Zγjj process
 differential measurement in m_{jj},;p_T,l;p_Tγ;p_Tj₁
- Strongest constraints on dim-8 EFT operators (T8,T9)
 using invariant mass di-lepton photon m(Z_Y)

Phys. Rev. D 104, 072001 (2021)

11

- Wγ→Ivγ has larger signal than Zγ
 o except QCD-induced bkg
- d W^+ d W^+ d u d u d u γ
- Data-driven estimation non-prompt background
 2D m_{ii}-m_{iv} binned likelihood fit
- Obs (exp) 6.0(6.8)σ significance for EW Wyjj process
 first measurement of the EW+QCD process
- Stringest constraints on M(2,3,4,5) and T(6,7)
 - using invariant mass m(Wγ)

- Good agreement with SM
- In some VBS VV scattering the EW measurements are ~1σ away from theory
- Accurate modelling of VVjj
 non-VBS contributions crucial

https://twiki.cern.ch/twiki/bin/view/CMS Public/PhysicsResultsCombined

	-		Observed	Expected	Observed	Expected	Observed	Expected	Observed	Expected
			$W^{\pm}W^{\pm}$	= + WZ	Z	Z	W	γ	Z	γ
			(Tel	/_4)	(TeV	/_4)	(TeV	⁷⁻⁴)	(TeV	/_4)
		$f_{\rm T0}/\Lambda^4$	[-0.25, 0.28]	[-0.35, 0.37]	[-0.24, 0.22]	[-0.37, 0.35]	[-0.6, 0.6]	[-0.6, 0.6]	[-0.52,0.44]	[-0.64,0.57]
		$f_{\rm T1}/\Lambda^4$	[-0.12, 0.14]	[-0.16, 0.19]	[-0.31, 0.31]	[-0.49, 0.49]	[-0.4, 0.4]	[-0.3, 0.4]	[-0.65,0.63]	[-0.81,0.90]
l Transvers	se	$f_{\mathrm{T2}}/\Lambda^4$	[-0.35, 0.48]	[-0.49, 0.63]	[-0.63, 0.59]	[-0.98, 0.95]	[-1.0, 1.2]	[-1.0, 1.2]	[-1.36, 1.21]	[-1.68, 1.54]
I (4 gauge t	ensors)	$f_{\rm T5}/\Lambda^4$					[-0.5, 0.5]	[-0.4, 0.4]	[-0.45,0.52]	[-0.58,0.64]
(1800801	chisors)	$f_{\rm T6}/\Lambda^4$			_		[-0.4, 0.4]	[-0.3, 0.4]	[-1.02, 1.07]	[-1.30,1.33]
		$f_{\rm T7}/\Lambda^4$			_	—	[-0.9, 0.9]	[-0.8, 0.9]	[-1.67, 1.97]	[-2.15,2.43]
I		$f_{\rm T8}/\Lambda^4$	_		[-0.43, 0.43]	[-0.68, 0.68]			[-0.36,0.36]	[-0.47,0.47]
		$f_{\rm T9}/\Lambda^4$		<u></u>	[-0.92, 0.92]	[-1.50, 1.50]		<u> </u>	[-0.72,0.72]	[-0.91,0.91]
		$f_{\rm M0}/\Lambda^4$	[-27, 29]	[-3.6, 3.7]			[-81,80]	[-77,76]	[-12.5,12.8]	[-15 8,16 0]
		$f_{ m M1}/\Lambda^4$	[-4.1, 4.2]	[-5.2, 5.5]			[-12, 12]	[-11, 11]	[-28.1,27.0]	[-35.0,34.7]
Mixed		$f_{ m M2}/\Lambda^4$			_	—	[-2.8, 2.8]	[-2.7, 2.7]	[-5.21, 5.12]	[-6.55,6.49]
		$f_{ m M3}/\Lambda^4$	_			s — — • •	[-4.4, 4.4]	[-4.0, 4.1]	[-10.2,10.3]	[-13.0,13.0]
(2 Higgs-ti	elds	$f_{\rm M4}/\Lambda^4$			<u> </u>		[-5.0, 5.0]	[-4.7, 4.7]	[-10.2,10.2]	[-13.0,12.7]
2 gauge te	ensors)	$f_{\rm M5}/\Lambda^4$					[-8.3, 8.3]	[-7.9, 7.7]	[-17.6,16.8]	[-22.2,21.3]
		$f_{\rm M6}/\Lambda^4$	[-5.4, 5.8]	[-7.2, 7.3]		-	[-16, 16]	[-15, 15]	_	!
		$f_{\rm M7}/\Lambda^4$	[-57,60]	[-78,76]			[-21, 20]	[-19, 19]	[-44 7 45 0]	[-56 6,55 9]
Scalar		$f_{ m S0}/\Lambda^4$	[-5.7, 6.1]	[-5.9, 6.2]		2 <u> </u>		_	_	
		f_{c_1}/Λ^4	[-16 17]	[-18 18]						_

 $L = 35.9 \text{ fb}^{-1}$

• **Competitive** limits for different final states: **semi-leptonic** channels **more sensitive**

• Expected/observed limits are in good agreement (**no clipping**)

Motivation for dimension-6 EFT sensitivity study

- Interpretation of VBS results traditionally in terms of dim-8 SMEFT operators
- However, dim-6 operators should not be neglected, see [arXiv:1809.04189]
- First LHE sensitivity study of VBS+WW including O(Λ⁻⁴) dim-6 terms, <u>JHEP05(2022)039</u>
- EFT analysis of **EWK+QCD-induced** processes (main background)
- Assess sensitivity interplay between VBS and diboson analyses at LHC
 - in the future global EFT fit will be necessary to provide the most stringent constraints to SMEFT operators (top, Higgs, EW, etc)

SMEFT Monte Carlo Generations

- **Paramerisation** using **15 dim-6 SMEFT operators** from **Warsaw basis**
- Generated at LO with <u>SMEFTsim</u> + MadGraph5_aMC@NLO (2.6.5)

Lin

- U(3)⁵ flavour symmetry
- {m_w,m₇,G_F} input scheme
- **CP-even**
- **Λ = 1TeV**
- **Event yield:**

 U(3)⁵ flavour symmetry 	$Q_{Hl}^{(1)} = (H^{\dagger}i\overleftrightarrow{D_{\mu}}H)(\bar{l}_{p}\gamma^{\mu}l_{p})$	$Q_{Hl}^{(3)} = (H^{\dagger} i \overleftrightarrow{D_{\mu}^{i}} H) (\bar{l}_{p} \sigma^{i} \gamma^{\mu} l_{p})$				
{m _w ,m _z ,G _F } input scheme	$Q_{Hq}^{(1)} = (H^{\dagger}i\overleftrightarrow{D_{\mu}}H)(\bar{q}_p\gamma^{\mu}q_p)$	$Q_{Hq}^{(3)} = (H^{\dagger} i \overleftrightarrow{D_{\mu}^{i}} H) (\bar{q}_{p} \sigma^{i} \gamma^{\mu} q_{p})$				
• CP-even	$Q_{qq}^{(1)} = (\bar{q}_p \gamma_\mu q_p)(\bar{q}_r \gamma^\mu q_r)$	$Q_{qq}^{(1,1)} = (\bar{q}_p \gamma_\mu q_r)(\bar{q}_r \gamma^\mu q_p)$				
 Λ = 1TeV 	$Q_{qq}^{(3)} = (\bar{q}_p \gamma_\mu \sigma^i q_p) (\bar{q}_r \gamma^\mu \sigma^i q_r)$	$Q_{qq}^{(3,1)} = (\bar{q}_p \gamma_\mu \sigma^i q_r) (\bar{q}_r \gamma^\mu \sigma^i q_p)$				
	$Q_{HD} = (H^{\dagger}D_{\mu}H)(H^{\dagger}D^{\mu}H)$	$Q_{H\square} = (H^{\dagger}H)\square(H^{\dagger}H)$				
	$Q_{HWB} = (H^{\dagger}\sigma^{i}H)W^{i}_{\mu\nu}B^{\mu\nu}$	$Q_{HW} = (H^{\dagger}H)W^{i}_{\mu\nu}W^{i\mu\nu}$				
Event yield:	$Q_W = \varepsilon^{ijk} W^{i\nu}_{\mu} W^{j\rho}_{\nu} W^{k\mu}_{\rho}$	$Q_{ll}^{(1)} = (\bar{l}_p \gamma_\mu l_r) (\bar{l}_r \gamma^\mu l_p)$				
SM	Quad					
$N \propto \left \mathcal{A}_{\rm SM} \right ^2 + \sum_{\alpha} \frac{c_{\alpha}}{\Lambda^2} \cdot 2 \operatorname{Re}(\mathcal{A}_{\rm SM} \mathcal{A}_{Q_{\alpha}}^{\dagger}) + \frac{c_{\alpha}^2}{\Lambda^4} \cdot \left \mathcal{A}_{Q_{\alpha}} \right ^2 + \sum_{\alpha,\beta} \frac{c_{\alpha} c_{\beta}}{\Lambda^4} \cdot \operatorname{Re}(\mathcal{A}_{Q_{\alpha}} \mathcal{A}_{Q_{\beta}}^{\dagger})$						

 α, β

Mix

- Modelling of VBS(diboson) 2→6(4) processes including non-resonant diagrams
 - both EWK and QCD-induced contributions for SM and EFT processes
 - ullet Same-sign WW: $\mathrm{p\,p}\,>\,\mathrm{e^+}\,
 u_\mathrm{e}\,\mu^+\,
 u_\mu\,\mathrm{j\,j}$
 - Opposite-sign WW (QCD): $\mathrm{p\,p}\,>\,\mathrm{e^+}\,
 u_\mathrm{e}\,\mu^-\,ar{
 u_\mu}\,\mathrm{j\,j}$
 - WZ+2j(QCD): $pp > e^+ e^- \mu^+ \nu_\mu jj$
 - ZZ+2j(QCD): $p p > e^+ e^- \mu^+ \mu^-$
 - ZV+2j(QCD): $p p > z w^+(w^-, z) > l^+ l^- j j j j$
 - WW: $\mathrm{p}\,\mathrm{p}\,\mathrm{p}\,\mathrm{s}\,\mathrm{e}^+\,
 u_\mathrm{e}\,\mu^-\,ar{
 u_\mu}$
- Fully-leptonic and semi-leptonic final states studied with LHC-like selections
 - o determine which observables most sensitive to EFT-induced anomalies

- **Dependence** of **EFT-**induced kinematic **anomalies** on **Wilson coefficients**
- Likelihood fit for each variable based on 1σ range (area for 2D fit)

Optimal variable extracted per operator used in combination

Individual operator constraints with(without) O(Λ⁻⁴) quadratic terms

- Large impact of quadratic terms on half of the single operator constraints
- Strongest constraints on four-fermion ops as expected
- Q_{HI}⁽¹⁾, Q_{HW}, Q_{H□}, Q_{HD} ops constrained solely by VBS processes

Individual constraints - VBS semileptonic

- Separate treatment for **ZVjj process** as main bkg **Z+jets** not accounted for
 - not included in combination

CMS

- Competitive constraints with WW di boson process, lower impact of O(Λ⁻⁴) term
- Inclusion of **QCD** term **enhances** the **sensitivity** to EFT effects (as in other channels)

Profiled constraints - VBS + WW combination

CMS

- Performed global fit of VBS+WW profile including all O(Λ⁻⁴) terms
 - **single operator** fit with all other **coefficients profiled** (free-floating in fit)

• **Profiled** constraints are up to **10x less stringent** wrt **individual** ones

- Study **channel sensitivity** to **operator pairs** using 2D template fit
 - o contours allow assessing interplay of VBS and di-boson measurements

- Orthogonal constraints between WW and and VBS for (Q_{HW},Q_{HWB})
- 2. **4-quark ops** constrained only by VBS
- 3. **flat directions Q_{HI}**⁽³⁾~ Q_{II}⁽¹⁾ **resolved** thanks to **channel combination**

- Highlights from recent VBS CMS measurements: consistency tests of EW sector
- VBS **powerful tool** to explore BSM physics in "**UV-agnostic**" way
- **Extremely challenging** measurement:
 - very low yields as among **rarest processes** ever measured
 - require very accurate modelling of QCD-induced background
- Full set of Run 2 and 3 needed to perform polarisation measurements and high precision differential measurements

- Extend scope of polarisation measurements to other VBS channels:
 - **add WZ, ZZ, W[±]W[∓]** production modes
- High precision differential measurements
 - test more variables
 - study variable cross-correlations
- Expand scope of EFT analyses
 - combination of VBS channels to constrain dimension 6 and 8 EFT operators

Prospects for High-Luminosity LHC

- Cross sections at LO and NLO EW for W⁺W⁻ scattering at √s=14,27,100 TeV
 - **σ increase** with **√s** while **EW corrections** become negatively **larger**
 - typical **scale** in the **Sudakov logarithms** is increasing

\sqrt{s}	$\sigma^{ m LO}[{ m fb}]$	$\sigma_{ m EW}^{ m NLO}[{ m fb}]$	$\delta_{ m EW} [\%]$	
$14\mathrm{TeV}$	1.4282(2)	1.213(5)	-15.1	
$27\mathrm{TeV}$	4.7848(5)	3.881(7)	-18.9	
$100\mathrm{TeV}$	25.485(9)	19.07(6)	-25.2	arXiv:2102.10991

- Simulations of **upgraded detectors** at $\sqrt{s}=14$ and total luminosity 3000 fb⁻¹
 - VBS W[±]W[±] expected total uncertainty on cross section is 4.5 (5-6)% for CMS(ATLAS)
 - VBS W[±]_L W[±]_L CMS+ATLAS combination should yield 3σ discovery
 - VBS W[±]Z overall expected uncertainty **5.5 (5)%** for **CMS(ATLAS)**
 - VBS $W^{\pm}Z_{L}$ expect **evidence** of **1.3-1.4** σ for CMS and **1.5-2.5** σ for ATLAS

Prospects for the VBS measurements at HL LHC

- **Prospects** for the study **of VBS W[±]W[±]/WZ** channels:
 - **EW production** and **polarized EW W[±]W[±]** production

• Analysis based on existing **results at 13 TeV** extrapolated **to 14 TeV at HL-LHC**

CMS-FTR-21-001 CDS:2776773

W[±]W[±] Polarization components

Definition according to the final state of the scattering:

$$W^{\pm} W^{\pm} \rightarrow W_{L}^{\pm} W_{T}^{\pm}$$

$$W^{\pm} W^{\pm} \rightarrow W_{T}^{\pm} W_{L}^{\pm}$$

$$W^{\pm} W^{\pm} \rightarrow W_{T}^{\pm} W_{T}^{\pm}$$

$$W^{\pm} W^{\pm} \rightarrow W_{L}^{\pm} W_{L}^{\pm} = \text{SIGNAL}$$

Summary of the fractions of the $W^\pm_L W^\pm_L$, $W^\pm_L W^\pm_T$, and $W^\pm_T W^\pm_T$ processes

Cross sections with $m_{jj}>200{ m GeV}$ and $p_{ m T}^{ m j}>10{ m GeV}$					
Mode	WW rest-frame Parton-parton rest-fram				
	fraction (%)	fraction (%)			
$W_L^{\pm}W_L^{\pm}$	10.9	7.3			
$\mathrm{W}^{\pm}_{\mathrm{L}}\mathrm{W}^{\pm}_{\mathrm{T}}$	31.9	37.4			
$\mathbf{W}_{\mathrm{T}}^{\pm}\mathbf{W}_{\mathrm{T}}^{\pm}$	57.2	55.3			

Each rest-frame produces different fractions, and hence different distributions

W[±]W[±] Polarization training variables

- · Distributions of three variables with great separation power are shown
- Different between LL and XT, between LX and TT (X=L or T)

W[±]W[±] Polarization Systematic uncertainties

Source of uncertainty	$W_{\rm L}^{\pm}W_{\rm L}^{\pm}$ (%)	$\mathrm{W}_X^\pm\mathrm{W}_\mathrm{T}^\pm$ (%)	$\mathrm{W}^\pm_\mathrm{L}\mathrm{W}^\pm_X$ (%)	$W_{T}^{\pm}W_{T}^{\pm}$ (%)
Integrated luminosity	3.2	1.8	1.9	1.8
Lepton measurement	3.6	1.9	2.5	1.8
Jet energy scale and resolution	11	2.9	2.5	1.1
Pileup	0.9	0.1	1.0	0.3
b tagging	1.1	1.2	1.4	1.1
Nonprompt lepton rate	17	2.7	9.3	1.6
Trigger	1.9	1.1	1.6	0.9
Limited sample size	38	3.9	14	5.7
Theory	6.8	2.3	4.0	2.3
Total systematic uncertainty	44	6.6	18	7.0
Statistical uncertainty	123	15	42	22
Total uncertainty	130	16	46	23

Statistically limited measurements

- The full NLO QCD and EW corrections for the leptonic unpolarized W[±]W[±] scattering have been computed B.Biedermann, A.Denner, and M.Pellen <u>arXiv:1611.02951 arXiv:1708.00268</u>
- Reduce the LO cross section for the EW W[±]W[±] process by approximately 10–15%
- Unknown for LL, LT, TT processes
 - α_s corrections expected to be the same for all the 3 polarization modes
 - **c** corrections expected to be **small for the L** mode
 - Take the NLO corrections for the unpolarized EW $W^{\pm}W^{\pm}$ and apply
 - $O(\alpha_{s}\alpha^{6})$ and $O(\alpha^{7})$ to **TT**
 - Only $\mathcal{O}(\alpha_s \alpha^6)$ to LL and LT
 - $\mathcal{O}(\alpha^7)$ on the shapes of **LL** and **LT** considered as a systematic uncertainty

- EFT amplitudes grow with m_{VV} and this growth is unphysical above a certain scale Λ; this sets the limit of validity of EFT approach
- This scale derived from partial wave unitarity condition (as function of Wilson coefficients)
- Above Λ, since the data is consistent with SM, we replace prediction of EFT amplitudes with SM in that region; this leads to conservative bounds on EFT Wilson coefficients
- The technique is known as "Clipping", and essentially means using EFT only in the region it is valid
 - first time limits are also reported in this way
- See details in Arxiv.1906.10769 and Arxiv.1802.02366