The hunt for non-resonant signals of new physics at the LHC

Ilaria Brivio

University of Zurich

Hello! 🙂

10 years since Higgs discovery

3 years since last in-person HEFT in Louvain-la-Neuve

... finally in person in Granada!

Where we are - LHC perspective

Ilaria Brivio (UZH)

Targeting non-resonant signals of new physics

- complementary to resonance searches. "leave no stone unturned"
- exploit higher statistics. will become more relevant in next Runs
- key idea: implement a comprehensive, agnostic program
- EFTs are a natural framework
 - \rightarrow allow a NP interpretation of non-resonant effects
 - \rightarrow allow combination with non-LHC measurements. "global likelihood"

→ Peter Stangl

SMEFT

Standard Model Effective Field Theory: The EFT constructed with **Standard Model** field & symmetries

$$\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \frac{1}{\Lambda} \mathcal{L}_{5} + \frac{1}{\Lambda^{2}} \mathcal{L}_{6} + \frac{1}{\Lambda^{3}} \mathcal{L}_{7} + \frac{1}{\Lambda^{4}} \mathcal{L}_{8} + \dots$$
$$\mathcal{L}_{d} = \sum_{i} C_{i} \mathcal{O}_{i}^{(d)} \qquad \qquad C_{i} = \text{Wilson coefficients}$$
$$\mathcal{O}_{i}^{(d)} = \text{gauge-invariant operators}$$

SMEFT describes any nearly-decoupled ($\Lambda \gg v$) BSM physics with "good" analyticity/geometry properties in the scalar sector

- ▶ well-known by this audience ~→ many talks in the next 3 days
- default candidate for LHC/global program
- underwent enormous developments in past decade

Ilaria Brivio (UZH)

The development of SMEFT - quick wrap up

- bases up to d = 9
- Hilbert series
- on-shell methods
- positivity
- unitarity bounds
- geometry

- RGEs for d = 6 and d = 8 (partial)
- predictions to NLO EW and NLO QCD
- first 2-loop results
- automation of RGE
- automation of LO and NLO QCD
- predictions and studies for Higgs, top, diboson, VBS, Drell-Yan, dijet...
- SMEFT in PDFs

- fitting technology/tools
- information geometry PCA, Fisher info...
- strategies to extract differential info

- matching to 1-loop with functional methods
- automation of matching to models
- matching to LEFT
- analysis of LHC + lower-E results

Some challenges ahead

what's missing for the LHC program to be successful?

i.e. measure some deviation at LHC & interpret correctly in terms of BSM

[personal/pragmatic point of view, not even trying to make a complete list]

• bring down error bars. aiming for 1 - 10% (for d = 6!)

$$\frac{v^2}{\Lambda^2} = 1.5\% \text{ at } \Lambda = 2 \text{ TeV} \qquad \qquad \frac{E^2}{\Lambda^2} = 11\% \text{ at } E = 1 \text{ TeV}, \Lambda = 3 \text{ TeV}$$

high precision needed also in EFT predictions! \rightarrow computationally challenging, mainly due to phase space integration \rightarrow hardest for NLO QCD (at high p_T) and/or pure interference

- better understanding/treatment of EFT-born theory uncertainties
- direct involvement of experiments
 better treatment of syst. uncertainties and correlations
- ▶ learn how to handle & understand likelihoods with 50+ parameters

Bayesian statistics

IB,Bruggisser,Geoffray,Luchmann,Lübbe,Plehn in preparation

Switching from Frequentist to Bayesian can simplify fits in many dimensions \rightarrow faster convergence to Gaussian shape \rightarrow much less expensive computationally

- in large fits, results are similar due to central limit thm
- main diffs. due to treatment of nuisance parameters in likelihood definition (integrated over vs. profiled)

Ilaria Brivio (UZH)

uncertainties in EFT predictions. in principle vary term-by-term

- uncertainties in EFT **predictions**. in principle vary term-by-term
- uncertainties due to missing higher orders in loops

- uncertainties in EFT predictions. in principle vary term-by-term
- uncertainties due to missing higher orders in loops
- uncertainties due to running & mixing coefficients (EFT scale)

 \rightarrow effect only partially compensated by mixing into C_{HG}

- uncertainties in EFT predictions. in principle vary term-by-term
- uncertainties due to missing higher orders in loops
- uncertainties due to running & mixing coefficients (EFT scale)
- uncertainties due to matching scale choice

fit matched to heavy vector triplet model, $M = 4 \,\mathrm{TeV}$

IB,Bruggisser,Geoffray,Luchmann,Kilian,Krämer, Plehn,Summ 2108.01094

- uncertainties in EFT **predictions**. in principle vary term-by-term
- uncertainties due to missing higher orders in loops
- uncertainties due to running & mixing coefficients (EFT scale)
- uncertainties due to matching scale choice

- uncertainties in EFT **predictions**. in principle vary term-by-term
- uncertainties due to missing higher orders in loops
- uncertainties due to running & mixing coefficients (EFT scale)
- uncertainties due to matching scale choice
- uncertainties due to missing higher EFT orders / unknown cutoff size

Impact of higher order operators

EFT obtained from matching to full model

EFT obtained from matching to full model

top-down: C_i fixed by matching \rightarrow EFT not valid in high-E region

bottom-up: fit C_i to data tends to make EFT match full result \rightarrow find wrong values of C_i

how to keep this into account?

sliding upper cut: Contino,Falkowski,Goertz, Grojean,Riva 1604.06444 uncertainty band: Trott et al 1508.05060,2007.00565,2106.13794, Hays,Martin,Sanz,Setford 1808.00442 Shepherd et al 1812.07575,1907.13160

compute at d=8 Boughezal,Mereghetti,Petriello 2106.05337

Ilaria Brivio (UZH)

safe scenarios \leftrightarrow no energy growth \leftrightarrow small effects

typical cases where d = 6 works well across the whole visible spectrum:

- observables w/o E dependence $(1 \rightarrow 2 \text{ decays})$
- BSM scenarios with very narrow and/or heavy states

adapted from Brehmer, Freitas, López-Val, Plehn 1510.03443

Brivio, Bruggisser, Geoffray, Kilian, Krämer, Luchmann, Plehn, Summ 2108.01094

price to pay: % effects only \rightarrow most sensitivity from <u>lowest error</u> region (\sim bulk)

Ilaria Brivio (UZH)

Direct searches can help

Direct searches can help

Direct searches can help

SMEFT or HEFT?

a component of the d = 6 vs model discrepancy can be removed by reabsorbing higher powers of v within d = 6 coefficients instead of leaving them to $d \ge 8$

conceptually similar to using **HEFT** instead

Brehmer, Freitas, López-Val, Plehn 1510.03443

which EFT is most convenient?

Ilaria Brivio (UZH)

Higgs EFT

Feruglio 9301281, Grinstein, Trott 0704.1505, Buchalla, Catà 1203.6510, Alonso et al 1212.3305...

$$H\mapsto rac{v+h}{\sqrt{2}}$$
 U, $U=\exp\left(rac{iec{\sigma}\cdotec{\pi}}{v}
ight)$

- ► less restrictive symmetry assumptions → more parameters
- separate couplings with different # of Higgs legs ^{IB et al 1311.1823,1604.06801,} Buchalla et al 1307.5017,1511.00988.

$$D_{\mu}\Phi^{\dagger}D^{\mu}\Phi \rightarrow \operatorname{Tr}(D_{\mu}\mathbf{U}^{\dagger}D^{\mu}\mathbf{U})\left(1+\frac{\mathbf{a}}{\mathbf{v}}+\frac{\mathbf{b}}{\mathbf{v}}\frac{h^{2}}{\mathbf{v}^{2}}+\dots\right)$$

- enhanced anomalous interactions among Goldstones = W_L, Z_L
- there are BSM theories that
 admit HEFT but not SMEFT
 with BSM sources of EWSB
 Cohen et al 2008.0597,Banta et al 2110.02967
 - with BSM particles that take > 1/2 of their mass from EWSB
- more convergent than SMEFT
- only consistent if $\Lambda \leq 4\pi v \sim 3 \text{ TeV}$ (unitarity violation)

Non-SMEFT non-resonant signals: HEFT

phenomenologically, HEFT generalizes SMEFT

in principle, can give distinctive signals in

- Comparison of processes with different # of Higgs legs VV → n × h Buchalla, Capozi, Celis, Heinrich, Scyboz 1806.05162 Gomez-Ambrosio, Llanes-Estrada, Salas-Bernardez, Sanz-Cillero 2204.01763
- processes with **Goldstones** (Z_L, W_L) $VV \rightarrow VV$

global fits in Higgs + EW sector

IB et al 1311.1823,1604.06801, Buchalla et al 1511.00988 Corbett,Éboli,Goncalves,Gonzalez-Fraile,Plehn 1511.08188 Éboli,Gonzalez-Garcia,Martines <u>2112.11468</u>

Ilaria Brivio (UZH)

Non-SMEFT non-resonant signals: light NP

Non-resonant signals can also be induced by new light states

 \rightarrow off-shell, in the limit $\sqrt{s} \gg m \rightarrow$ typically happens for heavy final states

 \rightarrow most relevant if they have momentum-enhanced couplings (EFT)

graviton G has d = 5 coupling $(G_{\mu\nu}\bar{t}_R\gamma^{\mu}D^{\nu}t_R)$, all others are d = 4

top-philic \rightarrow not ruled out by direct searches

Ilaria Brivio (UZH)

An interesting case: Axion-Like Particles

 $\ensuremath{\textbf{ALP}}\xspace = \ensuremath{\textbf{pseudo-Goldstone}}\xspace$ boson from breaking of BSM symmetry

Examples:	Peccei-Quinn symm.	\rightarrow	QCD axion	Peccei,Quinn 1977, Weinberg 1978 Wilczek 1978
	Lepton number	\rightarrow	Majoron	Gelmini,Roncadelli 1981 Langacker,Peccei,Yanagida 1986
	Flavor symm.	\rightarrow	Flavon	Wilczek 1982

Fundamental properties

- neutral, pseudo-scalar: spin 0, odd parity
- approx. shift symmetry $a(x) \rightarrow a(x) + c \Rightarrow m_a$ naturally small

Why so interesting?

- ▶ naturally the lightest remnant of heavy NP sectors \rightarrow easiest to discover
- ▶ spontaneous symmetry breakings are **ubiquitous** in BSM \rightarrow high relevance
- under certain conditions: good DM candidate

Ilaria Brivio (UZH)

ALP Effective Field Theory

- ALPs can be described in a EFT where heavy sector is integrated out
- ▶ SM fields + a & SM symmetries + ALP shift sym. (+ CP)
- Cutoff: f_a (ALP char. scale, reminiscent of f_{π}). LO: dimension 5

CP even: Georgi, Kaplan, Randall PLB169B(1986)73

$$\begin{split} \mathcal{L}_{ALP} &= \frac{1}{2} \partial_{\mu} a \partial^{\mu} a - \frac{m_a^2}{2} a^2 \\ &+ C_{\tilde{B}} O_{\tilde{B}} + C_{\tilde{W}} O_{\tilde{W}} + C_{\tilde{G}} O_{\tilde{G}} \\ &+ C_u O_u + C_d O_d + C_e O_e + C_Q O_Q + C_L O_L \quad + \mathcal{O}(f_a^{-2}) \end{split}$$

$$\begin{split} O_{\tilde{B}} &= -\frac{a}{f_a} B_{\mu\nu} \tilde{B}^{\mu\nu} \qquad O_{\tilde{W}} = -\frac{a}{f_a} W_{\mu\nu}^I \tilde{W}^{I\mu\nu} \qquad O_{\tilde{G}} = -\frac{a}{f_a} G_{\mu\nu}^A \tilde{G}^{A\mu\nu} \\ O_{f,ij} &= \frac{\partial^{\mu} a}{f_a} (\bar{f}_i \gamma^{\mu} f_j) \qquad \rightarrow C_f : \qquad N_g \times N_g \text{ symmetric matrices in flavor space} \end{split}$$

Recent developments in ALP EFT

relatively simple EFT \rightarrow nice playground recently borrowed some expertise from SMEFT

discussion on basis completeness

Chala, Guedes, Ramos, Santiago 2012.09017 Bauer, Neubert, Renner, Schnubel, Thamm 2012.12272 Bonilla, IB, Gavela, Sanz 2107.11392

- RGE evolution
- RGE mixing into SMEFT
- comprehensive 1-loop study, incl. finite parts
- unitarity constraints
- shift-invariants

Galda,Neubert,Renner 2105.01078 → Sophie's talk

Bonilla, IB, Gavela, Sanz 2107.11392

IB, Éboli, González-García 2106.05977

Bonnefoy,Grojean,Kley 2206.04182 → Quentin's talk

Why?

- tree-level access to couplings to heavy SM particles (W, Z, h, t)
- access to heavy ALPs ($m_a \gtrsim 10s$ GeV)

Why?

- tree-level access to couplings to heavy SM particles (W, Z, h, t)
- access to heavy ALPs ($m_a \gtrsim 10s$ GeV)

Why?

- tree-level access to couplings to heavy SM particles (W, Z, h, t)
- access to heavy ALPs ($m_a \gtrsim 10s$ GeV)

Why?

- tree-level access to couplings to heavy SM particles (W, Z, h, t)
- access to heavy ALPs ($m_a \gtrsim 10s$ GeV)

Why?

- tree-level access to couplings to heavy SM particles (W, Z, h, t)
- access to heavy ALPs ($m_a \gtrsim 10s$ GeV)

Non-resonant ALP signals at LHC

ZZ, γγ, tt: Gavela,No,Sanz,Troconiz 1905.12953, CMS PAS B2G-20-013 2111.13669 WW, ZY: Carrá, Goumarre, Gupta, Heim, Heinemann, Küchler, Meloni, Quilez, Yap 2106.10085

ALP off-shell for $m_a \ll m_1 + m_2 \leqslant \sqrt{s}$ "too light to be resonant"

Non-resonant ALP signals at LHC

 $ZZ,\,\gamma\gamma,\,t\bar{t}:$ Gavela,No,Sanz,Troconiz 1905.12953, CMS PAS B2G-20-013 2111.13669 $WW,\,Z\gamma:$ Carrá,Goumarre,Gupta,Heim,Heinemann,Küchler,Meloni,Quilez,Yap 2106.10085

puts a constraint on $(g_{aGG} \times g_{aVV})$ product for g_{aGG} not too small, competitive bounds on g_{aVV}

Ilaria Brivio (UZH)

Non-resonant searches in VBS

Bonilla, IB, Machado-Rodríguez, Trocóniz 2202.03450

same principle, applied to Vector Boson Scattering

- \rightarrow independent of g_{aGG} (if pure ALP signal dominates, adding $C_{\tilde{G}}$ does not worsen bounds)
- \rightarrow compare to actual analyses by CMS: $W^{\pm}W^{\pm}, W^{\pm}Z, W^{\pm}\gamma, Z\gamma, ZZ$

Non-resonant searches in VBS: Run 2 results

gauge invariant param. \rightarrow all EW couplings simultaneously accounted for

Non-resonant searches in VBS: projections

HL-LHC: sensitivity improves $\times 5 - 8$ on XS $\rightarrow \times 1.5 - 1.7$ on C_i/f_a

Dependence on ALP mass and width

► as long as $q^2 \gg m_a$, Γ_a , **independent** of exact values of mass and width "reverse" of an EFT $(q^2 \gg m^2 \text{ vs } q^2 \ll m^2 \text{ limit})$

• XS stable up until $m_a \lesssim 100 \text{ GeV}$

Comparison with other constraints

strongest bound on g_{aZZ} , g_{aWW} for $m_a \in [0.1, 100]$ GeV

main values

- ▶ independent of C_{G̃}
 - independent of m_a, Γ_a as long as < threshold

relevant to break flat directions

 $pp \rightarrow jjZZ$ in SMEFT

 $pp \rightarrow jjZZ$ with an ALP

[→] Antonio Vagnerini

- Non-resonant signals are a main target for the LHC in the future runs
- SMEFT is the default choice for a global program
- Enormous improvements made, some (technical) challenges still ahead
- Alternative EFTs are also good candidates for a BSM interpretation
- ▶ Non-resonant signals interesting also for light NP e.g. top-philic bosons, ALPs... → relevant at $\sqrt{s} \gg m$
- Distinguishing SMEFT / HEFT / other sources is an open task