EW Skyrmions in the HEFT HEFT 2022 / All Things EFT

Juan Carlos Criado, IPPP Durham

JCC, M. Spannowsky, V. Khoze: 2012.07694, 2109.01596

Motivation

- Hidden states around 1 TeV in the EFTs for the SM?
- Dark matter from the SM fields only?
- Information about SMEFT vs HEFT
- Machine learning for non-perturbative QFT

The Skyrme model Symmetry

The pions are the pseudo-Goldstones of the breaking: $SU(2)_L \times SU(2)_R \rightarrow SU(2)_V$

Non-linear realisation $U \rightarrow LUR^{\dagger}$, with $U = e^{i\sigma^a \pi^a/f}$

The Skyrme model Topology

- Static solutions $U(\mathbf{x})$ depend on spatial coordinates $\mathbf{x} \in \mathbb{R}^3$
- Finite energy implies $U(\mathbf{x}) \stackrel{\mathbf{x} \to \infty}{=} U_{\infty}$
- $U: \mathbb{R}^3 \cup \{\infty\} \cong S^3 \longrightarrow S^3$, classified by a integer winding number

Kovalev and Sandhoefner, Front. Phys. 6 (2018)

The Skyrme model Interactions

Non-trivial stable solutions: local minima of the energy functional

Derrick's theorem

- Perform a rescaling $\mathbf{x} \to \mathbf{x}/\lambda$ in a given solution
- Only 2-derivative terms: $E \sim d^3 x \partial^2 \rightarrow \lambda E \implies$ no local minima
- Both 2- and 4-derivative terms: $E \sim d^3 x (\partial^2 + \partial^4) \rightarrow (\lambda + C/\lambda) E$

$$\mathscr{L} = \frac{f_{\pi}^2}{4} \left\langle \partial_{\mu} U \partial^{\mu} U^{\dagger} \right\rangle +$$

$$\frac{1}{32e^2} \left\langle \left[U\partial_{\mu} U^{\dagger}, U\partial_{\nu} U^{\dagger} \right]^2 \right\rangle$$

The Skyrme model

Skyrmions = baryons

[Skyrme 1961], [Witten 1973], [Adkins, Nappi, Witten 1983], ...

Skyrmions in condensed matter physics

[Milde et al. 2013]

[Hoffman et al. 2015]

Electroweak skyrmions

Electroweak skyrmions Electroweak vs pion EFT

3 would-be Goldstone bosons collected in $U = e^{i\sigma^a G^a/f} \in S^3$

Extra degrees of freedom: gauge and radial Higgs component

EFT for EW skyrmions SMEFT vs HEFT topology

HEFT

Well-defined $U \in S^3$ for any h<u>example:</u> $(h, U) \in \mathbb{R} \times S^3$

SMEFT

 S^3 collapses to a since we have ϕ

point at
$$h = -v$$
,
 $\sim (h + v)U = 0$

$$\left[\phi = \frac{v+h}{\sqrt{2}}U\begin{pmatrix}0\\1\end{pmatrix}\right]$$

Electroweak skyrmions Limits

Frozen Higgs (technicolor)

Decoupled gauge fields

Both (\cong pion EFT)

 $m_h \rightarrow \infty \implies h = 0$ Gauge fields + Goldstones Meta-stable skyrmions, only for $e > e_{crit}$

 $g \rightarrow 0$ Higgs + Goldstones Stable skyrmions

 $m_h \rightarrow \infty, g \rightarrow 0$ Goldstones Stable skyrmions

Topological charges

Scalar winding number: $n_U = \frac{1}{24}$

Chern-Simons number: $n_{CS} = \frac{1}{16}$

$$\frac{1}{4\pi^2}\epsilon_{ijk}\int d^3x \left\langle L_i L_j L_k \right\rangle \in \mathbb{Z} \qquad \left(L_\mu = iU\partial_\mu U_\mu \right)$$

$$\frac{1}{6\pi^2}\epsilon_{ijk}\int d^3x \left\langle W_iW_{jk} + \frac{2i}{3}W_iW_jW_k \right\rangle \in \mathbb{R}$$

 $W_{\mu} = \mathcal{U}\partial_{\mu}\mathcal{U}^{\dagger} \Longrightarrow n_{CS} \in \mathbb{Z}$ is the winding number for \mathcal{U}

Skyrmion number

$$n_U \to n_U + N$$
, $n_{CS} \to n_{CS} + N$

We'll look for local minima of the energy with $n_{Sk} \simeq 1$

Under large gauge transformations:

Define gauge-invariant number: $n_{Sk} = n_{CS} - n_U$

Potential energy profile

$\operatorname{Nam}_{\mathcal{Q}_1}$ HEFT Lagrangian \mathcal{Q}_l \mathcal{Q}_l \mathcal{Q}_X ----- \mathcal{Q}_{XI} $\mathcal{L} = \sum_{i} F_i(h/v) \mathcal{Q}_i$ \mathcal{Q}_{Xl} \mathcal{Q}_{XU} $\left(F_i(\eta) = \sum_{n=0}^{\infty} c_{i,n} \eta^n\right)$ \mathcal{Q}_D \mathcal{Q}_D \mathcal{Q}_D \mathcal{Q}_D \mathcal{Q}_D

ne	Operator		
1	λ		
h	$\partial_\mu h \partial^\mu h$		
J	$\left\langle D_{\mu}U^{\dagger}D^{\mu}U ight angle$	Chiral dim. 2 (SIM)	
h2	$\frac{1}{g^2} \langle W_{\mu\nu} W^{\mu\nu} \rangle$		
h5	$\epsilon^{\mu\nu\rho\sigma} \langle W_{\mu\nu} W_{\rho\sigma} \rangle$		
U8	$i \langle W_{\mu\nu}[L^{\mu}, L^{\nu}] \rangle$		
711	$i\epsilon^{\mu\nu ho\sigma} \langle W_{\mu\nu}[L_{ ho}, L_{\sigma}] \rangle$		
01	$\langle L_{\mu}L^{\mu}\rangle^2$	Chiral dim. 4	
02	$\left\langle L_{\mu}L_{\nu}\right\rangle \left\langle L^{\mu}L^{\nu}\right\rangle$	(at logat and noodoo	
07	$\left< L_{\mu}L^{\mu} \right> \partial_{\nu}h \partial^{\nu}h$	for Skyrmions)	
28	$\left< L_{\mu}L_{\nu} \right> \partial^{\mu}h\partial^{\nu}h$		
11	$(\partial_{\mu}h\partial^{\mu}h)^2$		

 $\left(L_{\mu} = iU\partial_{\mu}U^{\dagger}\right)$

The Skyrme term in the HEFT

$\mathscr{L}_{Sk} = -\frac{1}{16}$

The power counting

$$\frac{1}{6e^2} \left(\mathcal{Q}_{D1} - \mathcal{Q}_{D2} \right)$$

g dictates that:
$$e \sim \frac{\Lambda}{4v}$$

Computing the skyrmion solution

Unitary gauge

Spherically symmetric Higgs

Gauge fields invariant under $SU(2)_V \subset SU(2)_{space} \times SU(2)_L$

Neural network parametrisation

$$x_i^{(1)} = \sigma(w_i^{(1)}r + b_i^{(1)}) \qquad x_i^{(1)} = \sigma(w_i^{(1)}r + b_i^{(1)})$$

$$f_{1} = \sigma(w_{0j}^{(3)}x_{j}^{(2)} + b_{i}^{(3)})$$

$$f_{1} = \sigma(w_{1j}^{(3)}x_{j}^{(2)} + b_{i}^{(3)})$$

$$f_{2} = \sigma(w_{2j}^{(3)}x_{j}^{(2)} + b_{i}^{(3)})$$

$$b = \sigma(w_{3j}^{(3)}x_{j}^{(2)} + b_{i}^{(3)})$$

 $x_i^{(2)} = \sigma(w_{ij}^{(2)} x_j^{(1)} + b_i^{(2)})$

Neural Network Training = gradient descent

 $L[\eta, f_1, f_2, b] = E[\eta, f_1, f_2, b] + \omega_W(\eta)$

The problem

Minimize the energy $E[\eta, f_1, f_2, b]$, while statisfying • $n_{Sk}[\eta, f_1, f_2, b] = n_W$ • The boundary conditions $B[\eta, f_1, f_2, b] = 0$

$$n_{SK}[\eta, f_1, f_2, b] - n_W)^2 + \omega_B B[\eta, f_1, f_2, b]^2$$

Elvet: <u>https://gitlab.com/elvet/elvet</u> J. Araz, JCC, M. Spannowsky, [2103.14575]

Example solutions

Skyrme term only, e = 1.2

Potential energy profiles

$$M_{Sk} \simeq \frac{10 \,\mathrm{TeV}}{e} \qquad E_{k}$$

 $\Xi_{barrier} \simeq 11 \,\mathrm{TeV} \qquad e_{crit} \simeq 0.9$

Skyrmion radius

$$R_{Sk}^{2} = \frac{i}{24\pi^{2}} \epsilon_{ijk} \int d^{3}x \, |\mathbf{x}|^{2} \left\langle W_{i}W_{j}W_{k} \right\rangle = \frac{2}{\pi(ve)^{2}} \int dr \, r^{2} \, b \, (f_{1}^{2} + f_{2}^{2})$$

$$R_{Sk} \simeq \frac{1.6}{ve}$$

Other operators

Name	Operator	Radial energy density
\mathcal{Q}_1	λ	— -
\mathcal{Q}_h	$\partial_\mu h \partial^\mu h$	$rac{r^2}{2}$ (
\mathcal{Q}_U	$\left\langle D_{\mu}U^{\dagger}D^{\mu}U ight angle$	$\frac{2}{v^2} \left(f_1^2 + f_2^2 + f_2^2 \right)$
 \mathcal{Q}_{Xh2}	$\frac{1}{g^2} \left\langle W_{\mu\nu} W^{\mu\nu} \right\rangle$	$-8e^{2}\Big[(f_{1}'-2bf_{2})^{2}+(f_{2}'+(2))^{2}+(f_{2}'+$
 \mathcal{Q}_{Xh5}	$\epsilon^{\mu u ho\sigma}\left\langle W_{\mu u}W_{ ho\sigma} ight angle$	
\mathcal{Q}_{XU8}	$i \langle W_{\mu\nu}[L^{\mu}, L^{\nu}] \rangle$	$\frac{16e^2}{2r^2} \Big[(f_1^2 + f_2^2)(f_1^2 + f_2^2 - f_1 + f_2^2) \Big] + f_2^2 - f_1 + f_2^2 - f_1 + f_2^2 \Big] + f_2^2 - f_1 + f_2^2$
 \mathcal{Q}_{XU11}	$i\epsilon^{\mu u ho\sigma}\left\langle W_{\mu u}[L_{ ho},L_{\sigma}] ight angle$	
 \mathcal{Q}_{D1}	$\langle L_{\mu}L^{\mu} angle^{2}$	$-rac{4e^2}{r^2}ig[2(f_1^2-$
 \mathcal{Q}_{D2}	$\left\langle L_{\mu}L_{\nu}\right\rangle \left\langle L^{\mu}L^{\nu}\right\rangle$	$-rac{4e^2}{r^2}\left[2(f_1^2-$
 \mathcal{Q}_{D7}	$\langle L_{\mu}L^{\mu} angle\partial_{\nu}h\partial^{ u}h$	$-e^2v^2(\eta')^2 \left[2($
\mathcal{Q}_{D8}	$\langle L_{\mu}L_{ u} angle \partial^{\mu}h\partial^{ u}h$	$-e^{2}v^{2}($
\mathcal{Q}_{D11}	$(\partial_\mu h \partial^\mu h)^2$	$-rac{e^2v^4}{4}$

y ρ_i in spherical ansatz $\frac{r^2}{e^2v^4}$ $(\eta')^2$ $(f_2^2 + \frac{r^2}{2}b^2)$ $2f_1 - 1)b)^2 + \frac{2}{r^2}(f_1^2 + f_2^2 - f_1)^2$ 0 $(-2r^2b^2) - br^2(f_2f_1' - f_1f_2' + bf_1)$ 0 $+f_2^2)+r^2b^2]^2$ $+f_2^2)^2 + r^4 b^4$ $(f_1^2 + f_2^2) + r^2 b^2$ $(\eta')^2 r^2 b^2$ $(\eta')^4 r^2$

Standard Model

Vanish in pure gauge

Support skyrmions

(Numerically) do not support skyrmions

The skyrmion region

"Non-skyrmion" operators

Phenomenology

Skyrmion production/decay

Skyrmion creation/decay

$$\sim e^{-1/g^2}$$
 suppression \Longrightarrow

Instanton/sphaleron

- Unlikely production at colliders.
- Stable \rightarrow dark matter?

Limits on the skyrmion operators

Limits from LHC on aQGC

Positivity

Behaviour as a classical particle

 $-2.7 \times 10^{-3} \le 2c_{D1,0} + c_{D2,0} \le 2.9 \times 10^{-3}$ $-8.2 \times 10^{-3} \le c_{D2,0} \le 8.9 \times 10^{-3}$

 $c_{D1,0} + c_{D2,0} > 0, \qquad c_{D2} > 0.$

 $R_{Sk} \gtrsim 1/M_{Sk}$

. . .

Limits on the skyrmion operators

 $M_{Sk} \simeq 1 - 2 \,\mathrm{TeV}$

Skyrmion dark matter

$$0.1 \simeq \Omega_{Sk} h^2 \simeq \frac{3 \times 10^{-27} \,\mathrm{cm}^3 \mathrm{s}^{-1}}{\left\langle \sigma_{ann} \mathrm{v} \right\rangle}$$

- Finite temperature corrections on the shape of the potential
- More accurate computations of the annihilation cross section

Summary

Machine learning techniques for non-perturbative QFT solutions

- There are meta-stable skyrmions in the HEFT
- We have identified which Wilson coefficients generate them
- Direct production at LHC unlikely \implies indirect limits
- EW Skyrmions have mass $M_{Sk} \simeq 1 2$ TeV and barrier $E_{barrier} \simeq 11$ TeV
- **Dark matter** candidates?