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Rapid progress in recent years

Using the Hilbert series, it became possible to count all SMEFT
operators up to very high dimensions

Benvenuti, Feng, Hanany, He hep-th/0608050 Lehman, Martin 1503.07537, 1510.00372
Feng, Hanany, He hep-th/0701063 Henning, Lu, Melia, Murayama 1512.03433
Hanany, Jenkins, Manohar, Torri 1010.3161

Dim 5 EH L2 +6H 2L ? Sample

G +57L0Q +45d°d*+81ded e" +36e’e™*+G " +B*HH +G*HH +0BelLH +9BdQH +9dGQOH =

HE*H +HG *H +9eHLH *+9dHQH *+H H +81dLd L +8lele L +81dQe L +9HB e L™+
9H e  H L™ +45L° L% +81elLd Q +162dQd Q" +9HB d Q +81eQe Q" +9Hd G Q +9H d"H Q" +

162 LQL Q +90Q° Q  +57 L7077 +81L0Qd u +540Q0° " W +9B " H Q U +9G H Q U +9HH Q u +
162’ L' Q u" +162d QP u" +81ld e U +HBE H W +9He LW +0Hd Q"W s 0H Q u W s HH W-w’ +
9BHQU+9GHQuU+162elLQu+162dQ°u+9H QH u+81dL  Q u+54eQ u+162dd v u+8lee’ u u=+
81LL U u+162Q0Q uw u+8ldeu’ +45u U +BHH W+9elLH W+9dQH W+9HQuUUW+HH W +W +
9dHd H 8+9eHe H 8+18HLH L  8+18HOH Q 8+9dH  u d+9H d  ud+9HH wud+2H H &

a

Dim 6

Format of each term: (#operators) x (field combinations)

® The Hilbert series method counts operators
It does not build them explicitly
—@ This method also does not indicate where to apply the derivatives
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Rapid progress in recent years

Number of operators

Renato Fonseca
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The traditional way

The Hilbert series (HS) gained prominence only in recent years

For decades, physicists have been building models and listing operators
taking all combinations of fields, and picking out the ones which are
gauge and Lorentz invariant (the traditional method)

Can it be used to reproduce the Hilbert series counting?
Yes. There are programs doing that.

BasisGen Criado 1901.03501 Sym2|nt RF 1703.05221, 1907.12584
AAAPANLDA

more on it later

B Viable to high dimensions

1010F il Works out of the box with
0l SMEFT 108 SMEFT any group, representations
105 - a = 3 [ .
wl  su -l shie) Yields more information than
e 10| just the number of operators,
o 107 | namely permutation
10 K ] . °
; i symmetries of flavor indices
2 5 10 15 2 5 10 15
Dimension Dimension Can’t tell where to apply
RF 1907.12584 derivatives (same as HS method)

Ot
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QQQL in SMEFT

When the Standard Model is considered as an effective low-energy theory, higher
dimensional interaction terms appear in the Lagrangian. Dimension-six terms have
been enumerated in the classical article by Buchmueller and Wyler [3]. Although
redundance of some of those operators has been already noted in the literature, no
updated complete list has been published to date. Here we perform their classification The ClllpI'it

once again from the outset. Assuming baryon number conservation, we find 15 + 19 + ’
25 = 59 independent operators (barring flavour structure and Hermitian conjugations),

as compared to 16 + 35 + 29 = 80 in Ref.[3]. The three summed numbers refer to
operators containing 0, 2 and 4 fermion fields. If the assumption of baryon number

5 new operators firise in the four-fermion sector.

Grzadkowski, Iskrzynski, Misiak, Rosiek, 1008.4884
(a.k.a. the “Warsaw paper”)

conservation is relaxed

1 years later (2017)

yv3 in arXiv of the same work

When the Standard Model is considered as an effective low-energy theory, higher
dimensional interaction terms appear in the Lagrangian. Dimension-six terms have
been enumerated in the classical article by Buchmueller and Wyler [3]. Although
redundance of some of those operators has been already noted in the literature, no
updated complete list has been published to date. Here we perform their classification
once again from the outset. Assuming baryon number conservation, we find 15 + 19 +
25 = 59 independent operators (barring flavour structure and Hermitian conjugations),

as compared to 16 + 35 + 29 = 80 in Ref.[3]. The three summed numbers refer to . .
paree © Rt L] . Easy to tackle this kind of
operators containing 0, 2 and 4 fermion fields. If the assumption of baryon number

conservation is relaxerise in the four-fermion sector. problem syst emat ically
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Operator Self Number of Number of Repeated Permutation
type conj.? operators terms fields symmetry
6 QQQL 6 False 57 @ Q E- I 11




Operator Dim Self Number of Number of Repeated Permutation
type ) conj.? operators terms fields symmetry

6 QQQL 6 False 57 @ 0 E_ e

Let’s square it: QQQQQQLL. How many terms in the Lagrangian? The
answer is still straightforward to calculate with a computer




Operator Dim Self Number of Number of Repeated Permutation
type ) conj.? operators terms fields symmetry

6

QQQL 6 False 57 @ 0 E_ e

Let’s square it: QQQQQQLL. How many terms in the Lagrangian? The

answer is still straightforward to calculate with a computer

Operator Dim Self Number of Number of Repeated
type ) conj.? operators terms fields

786 QQQQQQLL 12 False 4818 @ {Q, L}
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Sym2int

«Symmetries to Interactions»
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GroupMath

A Mathematica package for the

group theory computations

RF 2011.01764

Basis-independent functions (} RO U P M A.‘. H

Adjoint | Casimir | Conjugatelrrep | Dynkinlndex | DimR |
PermutationSymmetryOfinvariants | ReduceRepProduct | Srop s E ko b
RepName | RepSU pTODimN | Weights | TriangularAnomalyvalue | GroupMath is a Mathematica package containing several functions related to Lie Algebras and the

permutation group. For now, it is still a work in progress, so it not fully documented.

Basis—dependent functions However, it inherits much of its code from the Susyno package @, so some of GroupMath's
function have already described in this link @. Over the years, group theory functions were added
. . to the Susyno program (whole aim is to calculate renormalization group equations), however it
IrrepInProduct | RepMatrices | Invariants Impg .
became clear at some point that such code would be interesting on its own, so GroupMath was
created.
Permutation group functions Note that the latest version of the Sym2int code @ requires GroupMath.

References
DecomposesnPrOdUCt ’ DraWYounngagram | GenerateStandardTableaux I GroupMath has not been described in any publication yet, however it inherits much of its code

HOOkCOﬂtentFormula | LittlewoodRichardsoncoefﬁcients ‘ Snclasscharacter from Susyno: Computer Physics Communications 183 (2012) 2298.
| SnClassOrder | SnlrrepDim | SnlrrepGenerators | ... Installing the code

GroupMath can be obtained from this page:

Symmetry breaking functions

Download

DecomposeRep | FindAlIEmbeddings | MaximalSubgroups |
RegularSubgroupProjectionMatrix | SubgroupEmbeddingCoefficients
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Sym2Int

«Symmetries to Interactions»

A Mathematica package to list the operators in a model
Works out of the box for any gauge group and representations

RF 1703.05221, 1907.12584

gaugeGroup [SM] ~= {SU3, SU2, Ul1};

31 11 (LT PO e W e 37 ] L el [

AT e L L W e e Fe R R DL PR

fld3 = {"Q", {3, 2, 1/6}, "L", "C", 3};

flda = {el {1y 1y =1 ), TR, 35

Elgan EpE ey e e v s me Sy

i e Tl S e Ly i X Wl Sl L e

fields[SM] ~= (fldl, fld2, fld3, fld4, f1d5, f1d6};

savedResults = GenerateListOfCouplings [SM, MaxOrder - 6] ;
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Sym2Int

«Symmetries to Interactions»

A Mathematica package to list the operators in a model
Works out of the box for any gauge group and representations
RF 1703.05221, 1907.12584
A name to the model
l (e.g. SM)

gaugeGroup [SM] ~= {SU3, SU2, Ul}; < The gauge group
(e.g. SU(3) x SU(2) x U(1)

fld1 = {"u”, {3,

ey e b R LR S )
fld2 = {"d", {3, 1
2
1

_1 /3}, "R", Ilclr, 3};

-

St e o s e i B 7 5 Sl g et B The fields, i.e. the irreps under the
R = e ] e e R e e gauge and Lorentz groups,

§ I3 e b et (e iyt [ e W M eph] Wi oo F including #flavors

e e Tt ph TR Rl L Gy S )t

fields[SM] ~= {fld1, fld2, f1d3, fld4, fl1d5, fld6}; J

savedResults = GenerateListOfCouplings [SM, MaxOrder - 6] ; } Max dimension of interactions

(e.g.: 6)
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Example: SMEFT up to dim 6

Operator Dim. Self Number of MNumber of Repeated Permutation
type conj.? operators terms fields symmetry
1 H= H 2 True 1 1
2 L= & H 4 False 9 1
3 Qs d H 4 False 9 1
4 u= Q H 4 False 9 1
5 H+ Hx H H 4 True 1 1 [Hs, H} I, [}
& LLHH 5 False 6 1 {L, H} (0, 13
7 F1 F1 F1 6 False 1 1 Fl 111
8 F2 F2 F2 & False 1 1 F2 [T
9 DD HsH«HH 6 True 2 2 H=, Hl 2[00, [0 +2 O=0., O=00) -2 (O=0,. OO
1a o H« L« L H & True 13 2
11 ' Hx ex e H 6 True 9 1
12 0 H+ Q+ Q H B True 18 2
13 T He d= d H 6 True 9 1
14 9 He us uH 6 True 9 1
15 F3+ L= e H 5 False 9 1
16 F3s« Q= d H & False 9 1
17 F2+ L+ e H 6 False 9 1
13 F2+ Q= d H & False 9 1
19 Fl= Q= d H 6 False 9 1
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Example: SMEFT up to dim 6

42 Tous d HH &  False 9 1 H O=0
43 us Q@ H F1 B False 9 1
44 u=s Q HF2 @ False 9 1
45 u= Q@ HF3 B Fal=e 9 1
46 uude 6  False 81 1 u - H
a7 udQlL @ False a1 1
48 uQg Qe B Fal=e 54 1 Q (|
49 0QQL &  False 57 1 0 HEF‘ I
E1E] H= L+ e HH B False 9 1 H 1
51  Hs Q= d HH &  False 9 1 H .|
52  Hs us Q HH 6 False 9 1 H Tl
53 Hs H+ H«r HHH & True 1 1 [Hs, H) 0T, OO}
Dimension # real operators # real terms # types of real operators
2 1 1 1
3 5] 8 =]
4 55 7 7
5 12 2 2
6 3845 34 72
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Extending Sym2int

Building operators explicitly




Known results for SMEFT

SMEFT Buchmiiller, Wyler NPB 268 (1986) 621 Wikshel
dim 6 Grzadkowski, Iskrzynski, Misiak, EOMs are not used
mm Rosiek, 1008.4884

(Green basis)

1986-2017

SMEFT

) Lehman 1410.4193
dim 7

2014

Murphy 2005.00059

Li, Ren, Shu, Xiao, Yu, Zheng, 2005.00008 )
R e ; SMEFT dim 6

Gherardi, Marzocca, Venturini, 2003.12525

2020

SMEFT : :
Li, Ren, Xiao, Yu, Zheng, 2007.07899

dim 9

SMEFT dim 8
2020 (bosons)

DEFT Gripaios, Sutherland 1807.07546 Chala, Diaz-Carmona, Guedes 2112.12724
ABCAEFT Li, Ren, Xiao, Yu, Zheng 2201.04639
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Operators = polynomials in many variables

Operators are just homogenous polynomials in many variables

The variables are field components

Once we have a (potential over-complete) basis of operators of
some kind, we can take each monomial to be a basis of a vector
space and covert operators into vectors

At this stage we have a Linear Algebra problem

EOMs and IBPs are linear relations among the operators; they define
directions (vectors) in this vector space

E.g.:Ql Q2 Q3L

2500 e (e QA FR S L Pk e e QA 15 = 26 ki b Q3 1T TR Mt el R e {1195 2R s L O b2 b8 s e SO 2R T v B e 2 o] a0 3 Do b il b A S LS P2, nf i 2 2] s 22 M ik e e Q2 A0 550 Sl e Q3f 0 111
PR . 0 0 e o i (s Ny v il e ) A o e o S Y s W e e o ) O e ) (P e o A g R e P et i o o o B S B e S et D 0 E e 1 B B
Vorgry = 1 Lt P b AL P L [P T b2 O P P i = v L i R [ el b i o o L B0 B T N ol Bt P et 0 H 08 P ol e e 50 e U B0 It 2 ) I P U bt B T b S e e e L i o W O iy | I a2l
Porym L Dl B 8 I [ I P T o e e L T L e B o i L L I P P o o 2 O Pl el B o N S 2 T D T b e T 2 e e S TR 8 T B T e LA R T T |
P D D ER 0 W [ D U (0 e e T e N e .= o B £ 2}]'- B2 5, Qe M1 et @ R ey {3 Sk Y Q2 2% 25 2 e 203 P Wfiis o h e e IE o2 o 0 610 IQl'l, 22 Q2 25 e I [ Q3 e S 28]
ot L e o 0 . e Al o P i ) K DS R e e e b e [ At [2 [ETRR [1. 12 |1 87 ok b s o s G e B i b o 0 [l Lo ool i o B el s 2T
2ol e 2% - b2 o[ 20 k3 Q2o s 1 o e D] s Q3 D 1250 A Bl F 2% il R 25 Fpilg 24wt Qsf 0, 4T k025 021 P2 i ] bt DS e 2w 1 3]
P (6 By P 60 R ! e e 206 251 et [ B P I o B0 E B e e T g ] B el G Py i b o e i ey B ' Pl P, e el s Pt 0 £ ot By e
ol bl Lt 0 0 ] gl b et P 070 B 11 o T R VB ) Pl B e L BT L 0 ikt 1 L 0 o T B B Rl M ek 2 b T2 (6 b= (A R |
2 th e S Y MO 2t W] QR i {35 25 03 [l 2 w2 | T2 5 el ind]: 4] 1 2 QMY i S 2 e 102 27 1l prs w3 LA 02, e 122 5 S i s L el 5~ ST Qo2 ey 1 59200 e Q30 w1 20 29
2 e O [ e e 2} ] o Q2 2 5T, 1] 0003 15 2502 e il 52 £ f ALl ] ot QAL f ey b A2 [ 25 13552 ] Q3 [l uof 2,52 e IR 2 g s 2 1 oS 2 e 2 s 1 i Q2 [l o 1 e 1 [ LR Q3 s f 3L 0]
Pt T oo o0, 0 o e 6 g o o g 5 e 5 8 o ok g A o 3 0 o ] e 1 b 10 7. el o 1 2051 gt 5 ] 0 vt B 2ok ol I o, o ot B 1 e s o e . R e e |
s e s R 0 0 (R L e e B IR o L TR T G A TR R s BEE (=i I Mo B T T e e wh ] o G 1 P R (e i A [ 6 O (= P W I ) e O P T R B I S R B L M A o e B S o B (1 1P (|

kit
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Segregate Lorentz and gauge contractions

Handle the possible Handle the possible

contractions of the
gauge indices

contractions of the
Lorentz indices

Includes distributing
derivatives by the fields

Why? Convenience/elegance and speed.

It should be possible to sort out what is happening to the Lorentz indices, independently of
what is happening to the gauge indices (and vice-versa). [Spoiler: this is not true]

Consider the gluon field strength tensor: it is faster to handle separately the 8 color indices,
and the 6 Lorentz components, than to handle polynomials in 6 X 8 = 48 variables

Renato Fonseca Automatic generation of EFT operators 14



Lorentz contractions

' Distribute the derivatives by the fields in all possible ways

\

Vector indices: contract them in all possible ways with g’s and €’s

Explicitly build the expressions and check for redundancies

convert spinor indices into vector indices

Y
X
>
J
@ Place Weyl spinors in 4-D Dirac spinors
@® Form fermion bilinears
@® Use Dirac gamma matrices and C to
N i A L*R
)
= 0
s O p 0 7 v
X S e by ledrn i
b
R*L R*R
0
¥ 0_
R i e ] T

Renato Fonseca
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Gauge contractions (#1)

GroupMath can find the explicit gauge invariant contractions of a set
of representations of arbitrary Lie algebras

It works fine. However ... it might not be ideal.

-

Large tensors are passed

to other programs. Output
Priggram 2 ' ] Sym2Int does not need

to be easy to read

2.: FeynRules
Alloul, Chrlstensen, Degrande, Duhr, Fuks, 1310.1921

MatchMakereft
Carmona, Lazopoulos, Olgoso, Santiago, 2112.10787

Output of Sym2Int should
be human readable

No right /wrong answers here. But in the end, in both cases it is convenient that the
gauge contractions used are similar to what a human would write

Renato Fonseca Automatic generation of EFT operators 16



Gauge contractions (#2

To this of end, I’ve been extending GroupMath so that in the case of
SU(n) groups contractions are done via the tensor method.

The program outputs a tensor with the result, but also a string
identifying which type of contraction was made

{tensor, string} = SUNContractions[SU3, {15, 15, 15, 3, -3}][[{1, 3}11];
tensor
string // Column

=L Specified elements: 8532
My Al e o {12, 15, 15, 15, 3, 3
l Eps[5a, 5b, 5c| phil(4, 2, 3] phi2[3, 4, 5a] phi3[2, 1, 5b] phi4[5c] phi5[1]
Eps[5a, 5b, 5c] phil[4, 1, 2] phi2[3, 4, 5a] phi3[2, 3, 5b] phi4[5c] phi5[1]
T EpsiESan s cl L p s A e R e p i 2 3 e Sl pha 3 E 2 e A e Sh e ph A BS e lRa phii 5l F1] A a3
Eps[5a, 5b, 5c] phil[4, 1, 3] phi2[3, 2, 5a] phi3[2, 4, 5b] phi4[5c| phi5[1] Rt S
ERS S e s T L B S R e p B e G TR O LS s R RS e D RT S indices:
Eps|[5a, 5b, 5c] phil[4, 2, 5a] phi2[3, 1, 4] phi3[2, 3, 5b] phi4[5c] phi5[1]
contractions Eps[5a, 5b, 5c] phil[4, 1, 5a] phi2[3, 2, 4] phi3[2, 3, 5b] phi4[5c] phi5[1] 15***
Eps|[5a, 5b, 5c] phil[4, 3, 5a] phi2[3, 1, 2] phi3[2, 4, 5b] phi4[5c] phi5[1]
T Eps([5a, 5b, 5c| phil(4, 2, 5a] phi2[3, 4, 5b] phi3[2, 1, 3] phi4[5c] phi5[1] 3
T@ Eps[5a, 5b, 5c] phil[4, 3, 5a] phi2[3, 2, 5b] phi3[2, 1, 4] phi4[5c] phi5[1] §*
Eps|[5a, 5b, 5c] phil[4, 2, 5a] phi2[3, 1, 5b] phi3[2, 3, 4] phi4[5c] phi5[1]
Eps[5a, 5b, 5c] phil(4, 1, 5a] phi2[3, 2, 5b] phi3[2, 3, 4] phi4[5c] phi5[1]

Renato Fonseca Automatic generation of EFT operators 17



EOM relations

Replace in each operators (@ the expression 9™ ® by a new
expression where the part removable by EOMs is segregated

0o o1 09029 Oo039
6061Q5 8161(?5 816’2(}15 8183¢

OWOu? = | 00ap 010,6 92000 92850
0003¢p 01030 02030 03030
‘ Change variables
KD KI5 4 XI6) 4 Rl K9] K([8] K[7]
4 K[Q] ras 3 ] ie SK[B AR iR 1] K[S] K[4]
K([8] C Tk T T oK axEl e s k(2]
K7] K [4] K (2] G f i e wlas

The EOM removes the R]|...| components and leaves all the K|...| components:

8,0"¢ = R[1]

So in this case we can just set R[1]=0 and see what relations appear between the operators
in the “maximal basis”

INBACHSIGE  EOMs = vectors (linear relations among operators)

Renato Fonseca Automatic generation of EFT operators 18



IBP relations

Not complicated if things are done explicitly. In short:

@ Leave one of the derivatives free (don’t apply it to any field).
For all purposes it is a standard 4-vector field.

@® Using the Leibniz rule, apply the free derivative to the
remaining fields

@® We get in each case an expression, which must be a linear
combination of the basis of operators previously derived

In the end: IBPs = vectors (linear relations among operators)

Renato Fonseca Automatic generation of EFT operators 19



A major problem ... and its solution

Repeated fields

Operators with repeated fields (such as
LLHH) are much harder to handle.

The problem

Even ignoring derivatives, just consider
that (# contractions) # (# gauge
contr.) X (# Lorentz contr.)

The solution

Differentiate fields

LLHH — L.L-H,H>

Obtain a “super basis” of operators

Permutations of equal fields =
redundancies of the “super basis”

Renato Fonseca Automatic generation of EFT operators 20



Contractions £ gauge X Lorentz

. . Consider that both the gauge group
9
Let’s simply life and the Lorentz group are SU(2)

Gauge Lorentz
et
E.g. P = (2,2) How many ®®®dP independent contractions?

Four doublets contract into 2 singlets: 2 X 2 X2 X2 =1+4+1+4---

So we might think that there are two x two = 4 contractions. This is not
the case, because there is a single &

(a) (ﬁ) / 1
91929394 LT S (1)9111(1)9212(1)9353 (1)9454 3
4 contractions
2 possib. 2 possib.

(a) (ﬁ)
91929394 11121354@9111@92"2@93l3@g4l4 i
1 contractions

2 possib. 2 possib.

So in these cases I distinguish the fields: this gives rise to an excess of operators: a
“super basis”. But it is easy to study EOM and IBM relations for such a set of
operators. All that is left is to study the relations among the operators in the super
basis, imposed by the existence of repeated fields

Renato Fonseca Automatic generation of EFT operators



Grid of super basis of operators

I think it is very useful to picture all operators in a grid

Lorentz contractions
1 P 3 4 5 6 7 8

Gauge
contractions

o e
>
2
S

e
-
s
S
5
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Grid of super basis of operators

I think it is very useful to picture all operators in a grid

Lorentz contractions
1 P 3 4 5 6 7 8

Gauge
contractions

S o r
e
=
o
: s
o
S
2
G

Horizontal relations; the same for all rows (i.e. all gauge contractions)

Renato Fonseca Automatic generation of EFT operators A



Grid of super basis of operators

Gauge
contractions

Renato Fonseca

I think it is very useful to picture all operators in a grid

Lorentz contractions
1 P 3 4 5 6 7 8

o e
S
S
S

e
-
>
S
%

Horizontal relations; the same for all rows (i.e. all gauge contractions)

; the (i.e. all gauge contractions)

Automatic generation of EFT operators
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Grid of super basis of operators

I think it is very useful to picture all operators in a grid

Lorentz contractions
1 P 3 4 5 6 7 8

Gauge
contractions

o e
S
S
S

=
S
>
S
%

EOM’s Horizontal relations; the same for all rows (i.e. all gauge contractions)

; the (i.e. all gauge contractions)

Repeated

fields Oblique relations in general! Not the same for each row
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Grid of super basis of operators

I think it is very useful to picture all operators in a grid

Lorentz contractions
1 P 3 4 5 6 7 8

Gauge
contractions

o e
S
S
S

=
S
>
S
%

EOM’s Horizontal relations; the same for all rows (i.e. all gauge contractions)

; the (i.e. all gauge contractions)

Repeated
fields

A nice fact: in order to know the “repeated field redundancies” it is not necessary to
know the details of the gauge contractions — only how permutation symmetries act on
them (elegant; one can change the group/reps and still reuse results)

Oblique relations in general! Not the same for each row

Renato Fonseca Automatic generation of EFT operators A



Discriminate Example: D L Q Q QﬁH

the Q’s

SU3 gaug= contractions

1 @Qbarlal Qbar2 bl dcbar[al Der Q[b] H
2 @Qbarl’b] Qbar2 al dcbar[al Der Q[b] H

SU2 gauge contractions

1 Qbarla]l Qbar2[b] dcbar Der Q[al H[b]
2 Qbarl bl Qbar2[al dcbar Der Q[a] H[b]

Lorentz contractions

D (H) [Qly.Q] [Qbar2'C*dcbar]

DL (H) [Qlvz0Q] :Qbar'ET{C:ya,rlg:]*dcbar':
H [Q1y,D,(Q)] [Qbar2TC*dcbar]

H [QlyzD,(Q) ] [Qbar2T (Clvs,vel) *decbar’
H [D.(01) v.Q] [Qbar2'C*dcbar]

H [D.(01) vzQ] [Qbar2' (Cly,,vsz]) “dcbar]
H [QbarlTC*dcbar] [D,(0Q2] 7.0

H [QbarlT(C[y,,vs]) *dcbar] [T,(0Q2) vsQ’

W o~ o s W R e

H [Qbarl’C*Qbar2] [D,(dc) y.Q]
18 H :Qbar'lT{C::f'a,rlg:]*Qbar'z: [Dg (dc) veQ]
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Discriminate Example: D L Q Q QﬁH

the Q’s

SU3 gaug= contractions

1 @Qbarlal Qbar2 bl dcbar[al Der Q[b] H 2 SU(3)
2 Qbarl[b] Qbar2[a] dcbar[a] Der Q[b] H contractions
1 Qbarla]l Qbar2[b] dcbar Der Q[al H[b] y) SU(2)
2 Qbarl bl Qbar2[al dcbar Der Q[a] H[b] contractions

Lorentz contractions

D, (H) [Qly.Q] [Qbar2'C*dcbar]
Da(H) [Q1yzQ] [Qbar2' (Cly,,vs]) “dcbar]
H [Q1y,D,(Q)] [Qbar2TC*dcbar]

H [Q1yzD,(Q) ] [Qbar2T (Clv,,vs]) "dcbar]
H [D.(01) v.Q] [Qbar2'C*dcbar]

10 Lorentz

H [D.(QL) v5Q] [Qbar2' (Clva,vs]) "dcbar] [ [UNSNN
H [QbarlTC*dcbar] [D,(Q2) v.Q]

H [QbarlT(C[y,,vs] ) *dcbar] [T, (Q2) v:Q]
H [Qbarl’C*Qbar2] [Ds(dc) vaQ

186 H [QbarlT(C[y,,vs]) Qbar2] [D,(dc)ysQ]

W o~ o s W R e

#
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Di:ﬁri%inate Example: D m Q Q QﬁH

SU3 gaug= contractions

1 2345678910
1 @Qbarlal Qbar2 bl dcbar[al Der Q[b] H 2SU(3) (1 1) 6 6 006 o 5 0 0
2 Qbarl[b] Qbar2[a] dcbar[a] Der Q[b] H contractions (1’2) 1 19500000080
; 2 4
O © © 6 0 © @ @ @ 0,
1 @Qbarlal Qbar2 b dcbar Der Q[al H[b] 2 SU(2) (2’2) ' '
2 Qbarl bl Qbar2[al dcbar Der Q[a] H[b] contractions 419 others

Lorentz contractions .
Lorentz contractions IBP redundancies

1 Dy (H) [Q1v.Q] [Qbar2'C*dcbar for each (i,j) (1 e1e1e 2 -2 -2 2
2 Di(H) [QLvzQ] [Qbar2T (C[v,,vz]) “dcbar] : h i [ o _41]
. H [QTy.D.(0)] [Qbar2TCrdcbar or each (i,j) |e 10101 -3 -2 3.2
4 H [QlveD,(Q) 1 [Qbar2T(Cly,,vsl ) *decbar]
S W DT (ber2TCdehan 10 Loty
6 H [Da(Q1)¥sQ] [Qbar2'(Clva,vs]) dcbar] [ ERSMIOMETRS (0200000010
7 H [QbarlTC*dcbar] [D,(0Q2] 7.0 0 00 000100 0
8 H [QbarlT(Clvs,vz]) dcbar] [D,(Q2) vsQ for each (ij) 4 |[e @@ e 1006000
9 H [Qbarl’C*Qbar2] [D,(dc) y.Q] © 0 1000000
18 H [QbarlT(C[ya,vs]) Qbar2] [D,(dc)vzQ! @ 0100000086
s
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Example: D,,QQQd“H
Full basis (no IBPs nor EOMs redundancies considered) -
gauge | Lorentz
{{1,1:,1 {{1,21:,2: {{1,1:,3: {{1,1},4} {{1,1},5)

1,1, e [ o, e 1,9 (41, 1), 10)
R, I

(R, I} {R, I} {R, I} {R, I} (R, I} (R, I} (R, I} (R, I} (R, I}
({1, 2,1} {01, 2}, 2} ({1, 2},3} {{1,2},4} {{1,2},5} {{1,2},6} ({1, 2},w} ({1,2},8} ({1,2},9} {{1,2}, 10}
(R, I} (R, I} (R, I} (R, 1} (R, 1} (R, 1} (R, 1} (R, I} (R, I} (R, I}

Basis removing EOMs redundancies Keep real and imaginary parts

({1, 13,1 ({1, 1}, 2 {1, 1},6} {{1,1},8; {{1,1},10; {{1,2;,1} {{1,2},2} {{1,2},6} {{1,2;,8: {{1,2},1@}
{R, T} {R {R, T} {R, T} (R, T} {R, T} {R, T} (R, T} {R, T} {R, T}

Basis removing IBPs redundancies

J ¥ I.'
(01, 13,1 {{1,1:, 2 ({1, 1:,3} {{1,12:,4} {{1, 1,5 {{1,1},6} ({1,1:,7; ({1,1;,8; ({1,2},1} {{1,2;, 2}
{R, I} {R, I} {R, I} {R, I} {R, I} {R, I} {R, I} {R, I} {R, I} {R, I}
{1, 23, 3y {{1,2},4} {{1, 2,5} {{1,2},6} {{1,2},7} {{1,2}, 8}
(R, (R, I} (R, I} {R, I} (R, I} (R, I}

Basis removing EOMs and IBPs redundancies

I
041, 13, 1y ({1, 1}, 2 {1, 1}, 6} {{1,2},1} {{1,2},2} {{1,2}, 6}

This is one possibility: sets of operators that work are picked automatically. With
the redundancies calculated, another conceivable scenario is to allow the user to ask
the code “Do the operators A,B,C form a basis?”.

Interface & output format require thinking (work in progress)
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Example: D,,D, B BHH

1 Hbar Der Der H B1 B2

SU2 gauge contractions

1 Hbar[a] Der Der H[a] B1 B2

Lorentz contractions

Dy, o (Hbar) H B1[5y] B2[5v]
Dy, z(Hbar) H Bl[oy] B2[5v]
€gyse Dg,n(Hbar) H B1[5y] B2[&=]

Symmetric under
exchange of B1 and B2

H, B could transform differently (even under some different group), but the
results would be the same as long as B1 and B2 are symmetrically contracted

This is all that matters

Full basis (no IBPs nor EOMs redundancies considered) |

(01,13, 17 ({1, 13, 2% ({1, 1}, 3} ({1, 1},4} {{1,1}
(R, I} (R, I} (R, I} (R} (R}
> 82 ({1, 1:,9F {{1,1},10} {{1,1},11} {{1,1},12} ({1,

(R, I} (R, I} (R, I} (R, I}

Keep real part only

, 50 (1, 1)
(R}
1, 1)

{11, 1}

{R}
{11, 1}, 15}
{R}
€gyse Dg,z(Hbar) H Blloy] B2[&=]
Hbar D, .(H) BLl[Fy] B2[AY) Basis removing EOMs redundancies
Hbar T, s(H} Bllay] B2[Ev]
€gyce Hbar Dy, (H) Bl[Sy] B2[&=]
€gyse Hbar Dy g(H) Bl[ay] B2[&g]
Hbar H D, ,(B1[3y]) B2[BY]
€gyse Hbar H Dy o (B1[5y]) B2[&=]
Hbar H Bllof] Dy, (B2[afB])
€gyce Hbar H B1[Ss] Dy o (B2[3y])
Dy (Hbar) Dy (H) BL[Ay] B2[A7]
D, (Hbar) Dg(H) Bl[ay] B2[5y]

eI I« Y VT I

=
@

=
B W

L ]
35 Hbar H D, (Bl[af]) Dy, (B2[A¥])
36 Hbar H D, (B1[5y]) Dy (B2[5y]) ,
Hbar H D, (B1[Bv]) D, (B2[5e] )|

37 epgyee
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Example: D “,D,,WWHH

SU3 gauge contractions

1 Hbar Der Der H Wil Wi2

SU2 gauge contractions

1 Hbar[a] Der Der H[a] Wil[c,b] Wi2[b,c]
2 Hbar[c] Der Der H[a] Wil[a,b] Wi2[b,c]

Lorentz contractions

Dy,n(Hbar) H Wil[By] Wi2[3y]
Dy, z(Hbar) H Willoy] Wi2[5y]
€3yse D,z iHbar) H Wil[Sy] Wi2[de]
€gysz Dg,ziHbar) H Will[ay] Wi2[de]
Hbar D, (H) Wil[Gy] Wi2[5y]
Hbar Dy s (H) Willeoy] Wi2[&y]
€gyse Hbar Dy o (H) Wil[fSy] Wi2[de]
€gys: Hbar Dy z(H) Will[ay] Wi2[de]
Hbar H Dy, (Wil[By)) Wi2[Gy]
10 epyse Hbar H Dy o (Wil[By]) Wi2[Se]

11 Hbar H Wil[aB] Dy, (Wi2[aB])

12 epys: Hbar H Wil[Se] Dy o (Wi2[Fy])
13 D, (Hbar) Dy (H) Wil[By] Wi2[Bv]
14 D (Hbar) Dz (H) Willoy] Wi2[&y]

Lo T T B« ¥ B T N

L N N
35  Hbar H D, (WillaB]) D, (Wi2[Bv])

36 Hbar H Do (Wil[By]) D (Wi2[Ay])
37 ep,5c Hbar H D, (Wil[By]) Dy (Wi2[S5=])

Renato Fonseca

One contraction is symmetric (S) under exchange of

W1 and W2, and the other is anti-symmetric (A)

Written in this form, the S and A are mixed
(they are not cleanly separated)

For the symmetric (S) contraction the results on
the previous slide apply! For example, there are
12 operators after application of IBPs

For the anti-symmetric (A) gauge contraction,
there are an addition 7 operators in the Green
basis. Total: 124+7=19

Automatic generation of EFT operators 25



Example: D ND,,WWHH

SU3 gauge contractions B

[Ty Full basis (no IBPs nor EOMs redundancies considered)

m (41,13, 1 {{1,1}, 2  {{1,1},3: {{1,1},4; {{1,1},5 {{1,1;,6} {{1,1},7; {{1,1},8; {{1,1},9; {{1,1},18@;
{R, I} (R, T} (R, T} {R} {R} {R} {R} {R} {R, I} (R, I}

1 gE (01, 13, 11% ({1, 1}, 127 {{1, 1}, 13} {{1,

(R, I} (R, I} (R}

2 Ht L El f L k] i L f

({1, 23,11 {1, 2}, 12} {{1, 2}

(R, I} (R, T} {1}

Basis removing EOMs redundancies

Py 14 ({1, 1}, 15F ({1, 2},16} {{1,2},7} {{1,2},17; {{1,2},9; {{1,2},18;

1

{R} {R} {R, I} {R} {R, I}
21

I

(R, I} (R, I}

-
H

Lo T T B« ¥ B T N

PR Basis removing EOMs and IBPs redundancies

13 ({1, 1}, 2} {{1,1},6}; {{1,1},8}: {{1,2},7; {{1,2};,17} {{1, 2}, 16}
14 (R} (R} (R} g

35 Hbar H Dy (Wil[af]) Dy (Wi2[5y])
36 Hbar H D, (Wil[Sy]) Dy (Wi2[5v])
Hbar H Dy (Wil[3y]) Dy (Wi2[d=])

37 Egyee

T 2 %54 O
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Flavor

Ongoing work

Possible solution: run the same code multiple times, with
slightly different input

This is not so inefficient: total computation time does not scale with the
number of flavors/dimension of operator as badly was you might think!

Examples:
L,L;HH Run “flavorless” code 2 times: {L,,L,H,H} and {L,L’ ,H,H}
{Q,Q,Q,L}
QiQ;QrLi Run “flavorless” code 3 times: {Q,Q,Q’,L}
{Q,Q’,Q’’,L}
Q°L? Run “flavorless” code 22 times (not 3° = 6561 times)
AROUUUNNNENEEEEES...=s
Somehow use this information to populate coupling - UNDER
matrices/tensors in flavor space A CONSTRUCTION

e
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Summary

From a list of fields and some symmetries,
we want to get a basis of EF'T operators.
Maybe also tweak them (change basis)

I've described the possibility of making
GroupMath 4+ Sym2Int not just list,

but also build explicitly EFT operators

The good news: building such a code seems doable.
All SMEFT operators, with 3 generations, can be
computed up to dimension 10 in a couple of hours

Ongoing work. Hopefully on the @Sometime soon
Tl
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