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Why EFTs?

- EFTs allow us to split the problem in two independent steps:

- agnostic parametrization of experimental data in
terms of WC.

- The only input is the EFT.
- Observables are computed just once!

' re-introduce dependence with models through
matching.



The problem with EFTs

UV Theory

MATCHING
H = M1
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The problem with EFTs

UV Theory
M, ..., My, m MATCHING
j K= Ml
RGE i
... ]
MATCHING
u=M,

e One-loop running known _ |
for LEFT,SMEFT Low energy

* This process is automated. m
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The problem with EFTs

UV Theory
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MATCHING
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and classified.
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Abstract

We introduce matchmakereft, a fully automated tool to compute the tree-
level and one-loop matching of arbitrary models onto arbitrary effective theories.

vl [hep-ph] 20 Dec 2021

Matchmakereft performs an off-shell matching, using diagrammatic methods and

—_
f

f

/

the BFM when gauge theories are involved. The large redundancy inherent to the
off-shell matching together with explicit gauge invariance offers a significant number
of non-trivial checks of the results provided. These results are given in the physical
basis but several intermediate results, including the matching in the Green basis
before and after canonical normalization, are given for flexibility and the possibility
of further cross-checks. As a non-trivial example we provide the complete matching
in the Warsaw basis up to one loop of an extension of the Standard Model with
a charge —1 vector-like lepton singlet. Matchmakereft has been built with gener-
ality, Hexibility and efficiency in mind. These ingredients allow matchmakereft to
have many applications beyond the matching between models and effective theo-

arxiv:2112.1078

ries. Some of these applications include the one-loop renormalization of arbitrary
theories (including the calculation of the one-loop renormalization group equations
for arbitrary theories): the translation between different Green bases for a fixed
effective theory or the check of (off-shell) linear independence of the operators in an
effective theory. All these applications are performed in a fully automated way by
matchmakereft.
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Matchmakereft: Automated matching

. Matchmakereft is a fully automated tool to perform tree-level and

matching between
[ , Lazopoulos, PO, '21]

and

. Matching is performed off-shell, diagrammatically and using BFM.

. Flexible, reliable, fast and powerful:

Less than 1 minute to compute the one-loop
matching of the scalar singlet extension of
the SM (which was correctly computed only
after some iterations in the literature).
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Matchmakereft: Automated matching

. Matchmakereft is a fully automated tool to perform tree-level and

matching between and
[ , Lazopoulos, PO, '21]

. Matching is performed off-shell, diagrammatically and using BFM.

. Flexible, reliable, fast and powerful:

. Already used in [ '20] (ALPs RGEs)

several highly non- | '21] (Dim 8 SMEFT RGEs)
trivial calculations.

' 21] (Positivity bounds dim 8)

'21] (Green basis dim 8)
‘22] (Dim 8 SMEFT RGEs)
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Matchmakereft: Automated matching

. Matchmakereft is a fully automated tool to perform tree-level and

matching between and
[ , Lazopoulos, PO, '21]

. Matching is performed off-shell, diagrammatically and using BFM.

. Flexible, reliable, fast and powerful:

. Several cross-checks have Scalar Singlet [Haisch, Ruhdorfer, Salvioni, Venturini, Weiler ’20]

been performed. SMEFT RGEs [Jenkins, Manohar, Trott ’13]
Type | Seesaw [Zhang, Zhou '21]
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Matchmakereft: Automated matching

. Matchmakereft is a fully automated tool to perform tree-level and

matching between and
[Carmona, Lazopoulos, PO, Santiago "21]

. Matching is performed off-shell, diagrammatically and using BFM.
. Flexible, reliable, fast and powerful.

. It can also be used to:
. Compute one-loop of arbitrary EFTs.

. Check off-shell (in)dependence of a set of operators.
[ , , ’21] (Green basis dim 8)
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Inside Matchmakereft

. FeynRules model.



Inside Matchmakereft

- FeynRules model. I
ClagsName —> HL,
> Partlcle COntent and IndlCES' ->> {IndEX[SUZD]};
SelfConjugate -> False,
masses. QuantumNumbers -> {Y -> -1/2},

Ful IName -> "heavy",
Mass ML,
Width 0

}

S[108] == {
ClassName
Indices
SelfConjugate
FullName
Mass
Width
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Inside Matchmakereft

- FeynRules model. VK =

> Particle content and
masses.

> Lagrangian.

yuk+HC [yuk] +yuk2

18



Inside Matchmakereft

. FeynRules model.

dR Phi
eR Phi
eR Phi
L HT
uR
1L
1L
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Inside Matchmakereft

. FeynRules model (+ gauge file).

replacegaugedata = {

fsu2 -> SparseArray[Automatic, {3, 3, 3}, 0,

{1, {{0, 2, 4, 6}, {{2, 3}, {3, 2}, {1, 3}, {3, 1}, {1, 2}, {2, 1}}},
{1’ '1’ '1’ 1’ 1’ '1}}],

Ta -> SparseArray[Automatic, {3, 2, 2}, O,

{1, {{0, 2, 4, 6}, {{1, 2}, {2, 1}, {1, 2}, {2, 1}, {1, 1}, {2, 2}}},
{1/2, 1/2, -1/2, 1/2, 1/2, -1/2}}],

Tabar -> SparseArray[Automatic, {3, 2, 2}, 0,

{1, {{0, 2, 4, 6}, {{1, 2}, {2, 1}, {1, 2}, {2, 1}, {1, 1}, {2, 2}}},
{1/2, 1/2, 1/2, -1/2, 1/2, -1/2}}],

Ta4 -> SparseArray[Automatic, {3, 4, 4}, 0,

{1, {{0, 6, 12, 16}, {{1, 2}, {2, 1}, {2, 3}, {3, 2}, {3, 4}, {4, 3},
{1, 2}, {2, 1}, {2, 3}, {3, 2}, {3, 4}, {4, 3}, {1, 1}, {2, 2}, {3,
3}, {4, 4}}}, {Sqrt[3]1/2, Sqrt[3]/2, 1, 1, Sqrt[3]/2, Sqrt[3]/2,
(-1/2)*Sqrt[3], (I/2)*Sqgrt[3], -I, I, (-I/2)*Sqrt[3], (1I/2)*Sqrt[3],
3/2, 1/2, -1/2, -3/2}}]1,
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Inside Matchmakereft

- FeynRules model. (-1)%
- QGRAF.

> Computes all possible
diagrams.
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Inside Matchmakereft

. FeynRules model.
. QGRAF.

- FORM.

> Expansion by regions.
> Gamma processing.
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Inside Matchmakereft

. FeynRules model.
. QGRAF.

- FORM.

. Mathematica.

» Solve for Wilson Coefficients.
» Canohnical Normalization.

» Redundancies.
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. FORM. alphaO3W - -

Inside Matchmakereft

. FeynRules model.
. QGRAF.

g2° (MF? + 2 ML?) onelooporder

2880 MF2 ML? 2
. Mathematica.

» Solve for Wilson Coefficients.
» Canohnical Normalization.

» Redundancies.
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Let’s see how it works!




Future developments

. Today, the main bottlenecks are:
. Model generation.
. Reduction to physical basis (redundancies).

. Both fronts are being already tackled:

. Interplay with Sym2Int (with ) to automatically
generate models.

. On-shell matching (with ) to compute the redundancies.
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Conclusions

. EFTs are a very efficient way to look for new physics.

. Comparing theory vs experiment at one-loop is a highly non-trivial
multi-step problem.

. Matchmakereft is an automated tool to overcome this difficulties.

. Its output can be easily combined with other tools to study the low
energy phenomenology of any model.

- We encourage you to try!
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