Flavour of the SMEFT

Admir Greljo

AG, Thomsen, Palavric; 2203.0956 I

June 15, HEFT 2022

The SM

- <u>Basic rules</u>:
 - I. Symmetries: Spacetime & Gauge: Poincaré + $SU(3) \times SU(2) \times U(1)$
 - 2. Field Content (d.o.f): 5 fermionic representations in 3 generations + 1 scalar rep. $q_i, \ell_i, u_i, d_i, e_i \quad i = 1, 2, 3$ 3. Renormalisability

parameters:

- Gauge and Higgs sector: 5
- -Yukawa sector: 13

*Would be 3 for a single generation

- The fermionic kinetic term has $U(3)^5$ global (flavour) symmetry
- Yukawa matrices explicitly break this down to $U(1)_B \times U(1)_e \times U(1)_\mu \times U(1)_\tau$

The flavour puzzle

• Peculiar flavour patterns observed in $dim[\mathcal{O}] = 4$ Yukawa interactions

Patterns indicate symmetries

• Peculiar flavour patterns observed in $dim[\mathcal{O}] = 4$ Yukawa interactions $\implies Approximate flavour symmetries in the SM$

(The largest parameter $y_t = Y_{33}^u \sim 1$ breaks $U(3)_q \times U(3)_u \rightarrow U(2)^2 \times U(1)$, etc...)

Alhambra of Granada

 Flavour symmetries are important to understand the phenomenology: isospin, SU(3), heavy-quark symmetries, suppressions in the FCNC, etc.

SMEFT

*optimally summarise the knowledge about the microscopic physics accessible at low-energies.

- <u>Basic rules</u>:
 - I. Symmetries: Spacetime & Gauge: Poincaré + $SU(3) \times SU(2) \times U(1)$
 - 2. Field Content (d.o.f): 5 fermionic representations in 3 generations + 1 scalar rep. $q_i, \ell_i, u_i, d_i, e_i \quad i = 1, 2, 3$
- Lagrangian(x) = infinite series

• Truncation at $\dim \mathcal{O} \leq N$ \implies finite number of parameters

Physical effects
$$\sim \left(\frac{E}{\Lambda_{\mathcal{O}}}\right)^{\dim \mathcal{O}-4}$$

SMEFT

- Challenge: *a large number of independent parameters*!
- 2499 dim[\mathcal{O}] = 6 operators ($\Delta B = \Delta L = 0$) Alonso et al; 1312.2014
- Why?FLAVOUR
- For a single generation, this would be 59

Charting the space of SMEFT with flavour symmetries

AG, Thomsen, Palavric; 2203.09561 see also Faroughy et al; 2005.05366

Organising principle:

extra global symmetries (flavour symmetries and breaking patterns) to reduce the number of independent parameters at $dim[\mathcal{O}] = 6$.

Motivation:

- facilitate global SMEFT fits,
- chart the BSM space into universality classes.

Flavour physics constraints

- $dim[\mathcal{O}] = 6$ new sources of violation of approximate flavour symmetries.
- Strong constraints from flavour physics experiments!
- An anarchic flavour \implies no hope for deviations in Top/Higgs/EW

Scope

AG, Thomsen, Palavric; 2203.09561

2 Quark Sector

- 2.1 $U(2)^3$ symmetry
- 2.2 $U(2)^3 \times U(1)_{d_3}$ symmetry
- 2.3 $U(2)^2 \times U(3)_d$ symmetry
- 2.4 MFV_Q symmetry

3 Lepton Sector

- 3.1 $U(1)^3$ vectorial symmetry
- $3.2 \quad U(1)^6$ symmetry
- 3.3 U(2) vectorial symmetry
- 3.4 $U(2)^2$ symmetry
- 3.5 $U(2)^2 \times U(1)^2$ symmetry
- 3.6 U(3) vectorial symmetry
- 3.7 MFV $_L$ symmetry
- C Mixed quark-lepton operators

 28 different hypotheses for a flavour symmetry + symmetry-breaking spurions*

*A flavor spurion can be viewed as a non-dynamical (spurious) field transforming under a nontrivial representation of the flavor group and whose background value breaks the flavor symmetry.

- Flavor-breaking spurions needed to reproduce the observed charged fermion masses and mixings.
- Systematically moving from MFV towards anarchy
- Keep (some) suppression in FCNCs to allow for NP not far above the TeV scale (i.e. motivate global fits)

Scope

- AG, Thomsen, Palavric; 2203.09561
- 2 Quark Sector
 - 2.1 $U(2)^3$ symmetry
 - 2.2 $U(2)^3 \times U(1)_{d_3}$ symmetry
 - 2.3 $U(2)^2 \times U(3)_d$ symmetry
 - 2.4 MFV_Q symmetry

3 Lepton Sector

- 3.1 $U(1)^3$ vectorial symmetry
- $3.2 \quad U(1)^6$ symmetry
- 3.3 U(2) vectorial symmetry
- 3.4 $U(2)^2$ symmetry
- 3.5 $U(2)^2 \times U(1)^2$ symmetry
- 3.6 U(3) vectorial symmetry
- 3.7 MFV_L symmetry
- C Mixed quark-lepton operators

- Work in the Warsaw basis
- Construct operator bases order by order in the spurion expansion.
- Operators without spurion insertion relevant for *Top/Higgs/EW physics*
- Operators with spurion insertion relevant for *Flavour physics*
- Flavour-symmetric operators will be "protected" from flavour physics constraints. Not a theorem!
- Systematic approach: $U(3) \supset U(2) \supset U(1)$ (smaller symmetry \implies more terms)

MFV

• The flavour breaking in the NP sector is also from the Yukawa matrices

$$G_Q = \mathrm{U}(3)_q \times \mathrm{U}(3)_u \times \mathrm{U}(3)_d$$
$$Y_u \sim (\mathbf{3}, \mathbf{\overline{3}}, \mathbf{1}), \quad Y_d \sim (\mathbf{3}, \mathbf{1}, \mathbf{\overline{3}}).$$

• The MFV allows for the NP cutoff as low as the TeV scale!

MFV

• The flavour breaking in the NP sector is also from the Yukawa matrices

$$G_Q = \mathrm{U}(3)_q \times \mathrm{U}(3)_u \times \mathrm{U}(3)_d$$
$$Y_u \sim (\mathbf{3}, \mathbf{\overline{3}}, \mathbf{1}), \quad Y_d \sim (\mathbf{3}, \mathbf{1}, \mathbf{\overline{3}}).$$

• The MFV allows for the NP cutoff as low as the TeV scale!

- Small breaking spurions (well-defined power counting)
- Also protects against dangerous FCNC but less restrictive than the MFV

 $G = \mathrm{U}(2)_q \times \mathrm{U}(2)_u \times \mathrm{U}(2)_d$ $V_q \sim (\mathbf{2}, \mathbf{1}, \mathbf{1}) , \qquad \Delta_u \sim (\mathbf{2}, \overline{\mathbf{2}}, \mathbf{1}) , \qquad \Delta_d \sim (\mathbf{2}, \mathbf{1}, \overline{\mathbf{2}})$

U(2)

 $U(2)^3$ quark flavour

• Examples of bilinear structures

$(\bar{q}q)$

 $\mathcal{O}(1): (\bar{q}q), \quad (\bar{q}_3q_3), \qquad \mathcal{O}(V): (\bar{q}V_qq_3), \quad V_q^a \varepsilon_{ab}(\bar{q}_3q^b), \quad \text{H.c.}, \\ \mathcal{O}(V^2): (\bar{q}V_qV_q^{\dagger}q), \quad \left[\epsilon_{bc}(\bar{q}V_qV_q^cq^b), \quad \text{H.c.}\right].$ (2.12)

$(\bar{u}u)$

```
\mathcal{O}(1): \qquad (ar{u}u) \;, \quad (ar{u}_3 u_3) \;,
```

 $\mathcal{O}(\Delta V): \quad (\bar{u}\Delta_u^{\dagger}V_q u_3) , \quad (\bar{u}_a u_3)\varepsilon^{ab}(V_q^{\dagger}\Delta_u)_b , \quad \epsilon^{ad}\epsilon_{bc}[\bar{u}^a V_q^b(\Delta_u)^c{}_d u_3] , \quad \text{H.c.} , \quad (2.13)$ $\epsilon_{bc}[\bar{u}_3 V_q^b(\Delta_u)^c{}_a u^a] , \quad \text{H.c.} .$

$(\bar{d}d)$

- $\mathcal{O}(1): (\bar{d}d), (\bar{d}_3d_3),$
- $\mathcal{O}(\Delta V): \quad (\bar{d}\Delta_d^{\dagger}V_q d_3) , \quad (\bar{d}_a d_3)\varepsilon^{ab}(V_q^{\dagger}\Delta_d)_b , \quad \epsilon^{ad}\epsilon_{bc}[\bar{d}^a V_q^b(\Delta_d)^c{}_d d_3] , \quad \text{H.c.} , \quad (2.14)$ $\epsilon_{bc}[\bar{d}_3 V_q^b(\Delta_d)^c{}_a d^a] , \quad \text{H.c.} .$

*the new structures that appear in case of $SU(2)^3$ symmetry are denoted in blue

Watch out redundancies $\varepsilon^{ij}\varepsilon_{k\ell} = \delta^{i}{}_{\ell}\delta^{j}{}_{k} - \delta^{i}{}_{k}\delta^{j}{}_{\ell}$

• Examples of quartic structures

$(\bar{q}q)(\bar{q}q)$

 $\mathcal{O}(1): (\bar{q}_a q^b)(\bar{q}_b q^a), \quad (\bar{q}_a q_3)(\bar{q}_3 q^a), \\
\mathcal{O}(V): (\bar{q}_a q_3)(\bar{q}V_q q^a), \quad (\bar{q}_3 q^a)(\bar{q}_a \epsilon_{bc} V_q^c q^b), \quad (\bar{q}_3 q^a)(\bar{q}V_q \epsilon_{ac} q^c), \quad \text{H.c.}, \quad (2.18) \\
\mathcal{O}(V^2): (\bar{q}_a V_q^{\dagger} q)(\bar{q}V_q q^a).$

 $(\bar{u}u)(\bar{u}u)$

 $\mathcal{O}(1): (\bar{u}_a u^b)(\bar{u}_b u^a) , (\bar{u}_a u_3)(\bar{u}_3 u^a) ,$

 $\mathcal{O}(\Delta V) : (\bar{u}_{a}u_{3})(\bar{u}\Delta_{u}^{\dagger}V_{q}u^{a}) , \quad (\bar{u}_{a}u_{3})\epsilon^{ab}\epsilon_{de}[\bar{u}_{b}V_{q}^{d}(\Delta_{u})^{e}{}_{c}u^{c}] , \quad \epsilon^{be}\epsilon_{cd}(\bar{u}_{a}u_{3})[\bar{u}_{b}V_{q}^{c}(\Delta_{u})^{d}{}_{e}u^{a}] , \quad \text{H.c.} , \\ (\bar{u}_{3}u^{a})[\bar{u}_{a}V_{q}^{c}\epsilon_{cd}(\Delta_{u})^{d}{}_{b}u^{b}] , \quad (\bar{u}_{3}u^{a})[\bar{u}_{a}\epsilon_{bd}V_{q}^{c}(\Delta_{u}^{*})_{c}{}^{d}u^{b}] , \quad \epsilon_{ac}(\bar{u}_{3}u^{a})[\bar{u}_{b}V_{q}^{d}(\Delta_{u}^{*})_{d}{}^{b}u^{c}] , \quad \text{H.c.}$ (2.19)

$(\bar{d}d)(\bar{d}d)$

 $\mathcal{O}(1): (\bar{d}_a d^b)(\bar{d}_b d^a) , (\bar{d}_a d_3)(\bar{d}_3 d^a) ,$

$$\begin{split} \mathcal{O}(\Delta V) &: (\bar{d}_a d_3) (\bar{d} \Delta_d^{\dagger} V_q d^a) \;, \quad (\bar{d}_a d_3) \epsilon^{ab} \epsilon_{de} [\bar{d}_b V_q^d (\Delta_d)^e{}_c d^c] \;, \quad \epsilon^{be} \epsilon_{cd} (\bar{d}_a d_3) [\bar{d}_b V_q^c (\Delta_d)^d{}_e d^a] \;, \quad \text{H.c.} \;, \\ & (\bar{d}_3 d^a) [\bar{d}_a V_q^c \epsilon_{cd} (\Delta_d)^d{}_b d^b] \;, \quad (\bar{d}_3 d^a) [\bar{d}_a \epsilon_{bd} V_q^c (\Delta_d^*){}_c^d d^b] \;, \quad \epsilon_{ac} (\bar{d}_3 d^a) [\bar{d}_b V_q^d (\Delta_d^*){}_b^d d^c] \;, \quad \text{H.c.} \;. \end{split}$$

$U(2)_q \times U$	$(2)_u \times \mathrm{U}(2)_d$	\mathcal{O}	(1)	$\mathcal{O}($	V)	$\mathcal{O}(V)$	$^{/2})$	$\mathcal{O}($	V^3)	$\mathcal{O}($	Δ)	$\mathcal{O}(2$	$\Delta V)$
a/,2 H3	Q_{uH}	1	1	1	1					1	1	1	1
ψ II	Q_{dH}	1	1	1	1					1	1	1	1
a/2 X H	$Q_{u(G,W,B)}$	3	3	3	3					3	3	3	3
ψΛΠ	$Q_{d(G,W,B)}$	3	3	3	3					3	3	3	3
	$Q_{Hq}^{(1,3)}$	4		2	2	2							
$\psi^2 H^2 D$	Q_{Hu}, Q_{Hd}	4										2	2
	Q_{Hud}	1	1									2	2
(LL)(LL)	$Q_{qq}^{(1,3)}$	10		6	6	10	2	2	2				
(DD)(DD)	Q_{uu}, Q_{dd}	10										6	6
(nn)(nn)	$Q_{ud}^{(1,8)}$	8										8	8
(LL)(RR)	$Q_{qu}^{(1,8)}, Q_{qd}^{(1,8)}$	16		8	8	8				4	4	12	12
(LR)(LR)	$Q_{quqd}^{(1,8)}$	2	2	4	4	2	2			8	8	12	12
Т	otal	63	11	28	28	22	4	2	2	20	20	50	50

Table 2. Counting of the pure quark SMEFT operators (see Appendix A) assuming $U(2)_q \times U(2)_u \times U(2)_d$ symmetry in the quark sector. The counting is performed taking up to three insertions of V_q spurion, one insertion of $\Delta_{u,d}$ and one insertion of the $\Delta_{u,d}V_q$ spurion product. Left (right) numerical entry in each column gives the number of CP even (odd) coefficients at the given order in spurion counting.

Tools

• Mathematica package **SMEFTflavor** to facilitate the use of flavor symmetries

https://github.com/aethomsen/SMEFTflavor

In[*]:= CountingTable[{"quark:3U2", "lep:2U2"}, SpurionCount → 1, SMEFToperators → semiLeptonicOperators]

{quark:3U	12, lep:2U2}	0[1]	0[Vl]	0[Vq]
(LL) (LL)	0lq(1,3)	8		4	4	4	4
(RR) (RR)	0eu	4					
	0ed	4					
(LL) (RR)	Olu	4		2	2		
	Old	4		2	2		
	0qe	4				2	2
(LR) (LR)	0lequ(1,3)	2	2	2	2	2	2
(LR) (RL)	Oledq	1	1	1	1	1	1
Тс	otal	31	3	11	11	9	9
	{quark:3U (LL)(LL) (RR)(RR) (LL)(RR) (LR)(LR) (LR)(RL)	$ \begin{array}{ll} \{ \texttt{quark:3U2, lep:2U2} \} \\ (\texttt{LL})(\texttt{LL}) & \texttt{Olq(1,3)} \\ (\texttt{RR})(\texttt{RR}) & \texttt{Oeu} \\ & \texttt{Oed} \\ (\texttt{LL})(\texttt{RR}) & \texttt{Olu} \\ & \texttt{Old} \\ (\texttt{LL})(\texttt{RR}) & \texttt{Olu} \\ & \texttt{Old} \\ & \texttt{Oqe} \\ (\texttt{LR})(\texttt{LR}) & \texttt{Olequ(1,3)} \\ (\texttt{LR})(\texttt{RL}) & \texttt{Oledq} \\ & \texttt{Total} \end{array} $		$\begin{array}{c c c c c c c c } & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	{quark:3U2, lep:2U2} O[1] O[Vl] (LL)(LL) Olq(1,3) 8 4 4 (RR)(RR) Oeu 4 4 4 (RR)(RR) Oeu 4 2 2 (LL)(RR) Olu 4 2 2 (LL)(RR) Old 4 2 2 (LL)(RR) Olqe 4 2 2 (LR)(LR) Olequ(1,3) 2 2 2 (LR)(RL) Oledq 1 1 1 Total 31 3 11 11	{quark:3U2, lep:2U2} O[1] O[Vl] O[(LL)(LL) Olq(1,3) 8 4 4 (RR)(RR) Oeu 4 4 4 (RR)(RR) Oeu 4 5 5 (LL)(RR) Oed 4 5 5 (LL)(RR) Olu 4 2 2 (LL)(RR) Olq 4 2 2 (LL)(RR) Olq 4 2 2 (LL)(RR) Olq 4 2 2 (LR)(RR) Olequ(1,3) 2 2 2 (LR)(LR) Olequ(1,3) 2 2 2 (LR)(RL) Olequ(1,3) 2 2 2 2 (LR)(RL) Oledq 1 1 1 1

```
/m[*]:= AddSMEFTSymmetry["Lepton", "lep:U2xU1" → <|
Groups → <|"U2l" → SU@ 2|>,
FieldSubstitutions → <|"l1 → {"l12", "l3"}, "e" → {"e12", "e3"}|>,
Spurions → {"Δl", "VL", "Xτ"},
Charges → <|"l12" → {1, 0}, "l3" → {0, 1}, "e12" → {-1, 0}, "e3" → {0, -1},
"Δl" → {2, 0}, "Vl" → {1, 1}, "Xτ" → {0, 2}|>,
Representations → <|"l12" → {"U2l"@ fund}, "e12" → {"U2l"@ fund},
"Vl" → {"U2l"@ fund}, "Δl" → {"U2l"@ adj}|>,
SpurionCounting → <|"Xτ" → 1, "Vl" → 2, "Δl" → 3|>,
SelfConjugate → {"Δl"}
```

Flavour-symmetric bases: Summary

AG, Thomsen, Palavric; 2203.09561

SMEI	FT $\mathcal{O}(1)$ terms			I	Lepton s	ector			
(dia	m-6, $\Delta B = 0$)	MFV_L	$\mathrm{U}(3)_V$	$U(2)^2 \times U(1)$	$U(2)^{2}$	$\mathrm{U}(2)_V$	$U(1)^{6}$	$U(1)^{3}$	No symm.
	MFV_Q	47	54	65	71	80	87	111	339
Quark	$\mathrm{U}(2)^2 \times \mathrm{U}(3)_d$	82	93	105	115	128	132	168	450
Sector	$\mathrm{U}(2)^3 \times \mathrm{U}(1)_{b_\mathrm{R}}$	96	107	121	128	144	150	186	480
Sector	${ m U}(2)^{3}$	110	123	135	147	162	164	206	512
	No symm.	1273	1334	1347	1407	1470	1425	1611	2499

*Terms relevant for the high- p_T physics:Top, Higgs & electroweak

Some comments

SMEFT $\mathcal{O}(1)$ terms		Lepton sector								
(dia	m-6, $\Delta B = 0$)	MFV_L	$\mathrm{U}(3)_V$	$U(2)^2 \times U(1)$	$U(2)^{2}$	$\mathrm{U}(2)_V$	$U(1)^{6}$	$U(1)^{3}$	No symm.	
	MFV_Q	47	54	65	71	80	87	111	339	
Quark	$\mathrm{U}(2)^2 \times \mathrm{U}(3)_d$	82	93	105	115	128	132	168	450	
Sector	$\mathrm{U}(2)^3 \times \mathrm{U}(1)_{b_\mathrm{R}}$	96	107	121	128	144	150	186	480	
Sector	$\mathrm{U}(2)^3$	110	123	135	147	162	164	206	512	
	No symm.	1273	1334	1347	1407	1470	1425	1611	2499	

MFV with all breakings neglected apart from y_t . Radiatively stable (approximate symmetry of dim[\mathcal{O}] = 4)

Third-family specific. Discriminates t and b from light jets, and τ from μ/e (experimentally possible).

Allows for LFUV between e and μ which is experimentally accessible.

- Moving away from the MFV, many four-fermion operators!
- Add high-mass Drell-Yan and multi-jet to the EFT program
- Interplay with flavour physics

Flavour Physics in High- p_T **Tails**

<u>Example</u>: Rare $c \rightarrow u\ell^+\ell^-$ decays

- Tiny SM rates: $BR(D^0 \rightarrow \mu^+\mu^-) \sim \mathcal{O}(10^{-13})$ short-distance contribution negligible (efficient GIM suppression), long-distance dominated
- Already strong experimental upper limits: $BR(D^0 \rightarrow \mu^+\mu^-) \lesssim 6 \times 10^{-9}$ LHCb, 1305.5059
- Null test of the SM sensitive to New Physics

Conclusions

- A UV theory will leave imprints on the flavor structure of the SMEFT.
- The selection rules implied have the advantage of reducing the number of important SMEFT operators by truncating the flavor-spurion expansion.
- Global flavor symmetries and their breaking patterns, thus, provide a good organizing principle for the SMEFT, mapping the space of theories beyond the SM into universality classes.
- We constructed operator bases order by order in the spurion expansion for 28 different flavour symmetries supporting TeV-scale NP.
- Ready-for-use setups for phenomenological studies and global fits.

AG, Thomsen, Palavric; 2203.09561 https://github.com/aethomsen/SMEFTflavor

The End

Alhambra of Granada

A Warsaw basis

Here we list the $\Delta B = 0$ dimension-6 fermionic SMEFT operators in the Warsaw basis [13] with division into classes as presented in [14].

5–7: Fermion Bilinears

			non-her	mitian	$(\bar{L}R)$		
	5: $\psi^2 H^3$				6: $\psi^2 X H$		
Q_{eH}	$(H^{\dagger}H)(\bar{\ell}_{p}e_{r}H)$	Q_{eW}	$(\bar{\ell}_p \sigma^{\mu\nu} e_r) \tau^I H W^I_{\mu\nu}$	Q_{uG}	$(\bar{q}_p \sigma^{\mu\nu} T^A u_r) \tilde{H} G^A_{\mu\nu}$	Q_{dG}	$(\bar{q}_p \sigma^{\mu\nu} T^A d_r) H G^A_{\mu\nu}$
Q_{uH}	$(H^{\dagger}H)(\bar{q}_{p}u_{r}\tilde{H})$	Q_{eB}	$(\bar{\ell}_p \sigma^{\mu\nu} e_r) H B_{\mu\nu}$	Q_{uW}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \tau^I \tilde{H} W^I_{\mu\nu}$	Q_{dW}	$(\bar{q}_p \sigma^{\mu\nu} d_r) \tau^I H W^I_{\mu\nu}$
Q_{dH}	$(H^{\dagger}H)(\bar{q}_p d_r H)$			Q_{uB}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \tilde{H} B_{\mu\nu}$	Q_{dB}	$(\bar{q}_p \sigma^{\mu\nu} d_r) H B_{\mu\nu}$
	harmitian $(+, 0, -)$ 7. $\frac{1}{2} \frac{1}{2} 1$						

	hermitian (+ Q_{Hud}) ~ 7: $\psi^2 H^2 D$								
$(\bar{L}L)$			$(\bar{R}R)$	$(\bar{R}R')$					
$Q_{H\ell}^{(1)}$	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{\ell}_{p}\gamma^{\mu}\ell_{r})$	Q_{He}	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{e}_{p}\gamma^{\mu}e_{r})$	Q_{Hud}	$i(\tilde{H}^{\dagger}D_{\mu}H)(\bar{u}_{p}\gamma^{\mu}d_{r})$				
$Q_{H\ell}^{(3)}$	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}H)(\bar{\ell}_{p}\tau^{I}\gamma^{\mu}\ell_{r})$	Q_{Hu}	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{u}_{p}\gamma^{\mu}u_{r})$						
$Q_{Hq}^{(1)}$	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{q}_{p}\gamma^{\mu}q_{r})$	Q_{Hd}	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{d}_{p}\gamma^{\mu}d_{r})$						
$Q_{Hq}^{(3)}$	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}H)(\bar{q}_{p}\tau^{I}\gamma^{\mu}q_{r})$								

8: Fermion Quadrilinears

			hermitian		
	$(\bar{L}L)(\bar{L}L)$		$(\bar{R}R)(\bar{R}R)$		$(\bar{L}L)(\bar{R}R)$
$Q_{\ell\ell}$	$(\bar{\ell}_p \gamma_\mu \ell_r) (\bar{\ell}_s \gamma^\mu \ell_t)$	Q_{ee}	$(\bar{e}_p \gamma_\mu e_r) (\bar{e}_s \gamma^\mu e_t)$	$Q_{\ell e}$	$(\bar{\ell}_p \gamma_\mu \ell_r) (\bar{e}_s \gamma^\mu e_t)$
$Q_{qq}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r) (\bar{q}_s \gamma^\mu q_t)$	Q_{uu}	$(\bar{u}_p \gamma_\mu u_r)(\bar{u}_s \gamma^\mu u_t)$	$Q_{\ell u}$	$(\bar{\ell}_p \gamma_\mu \ell_r) (\bar{u}_s \gamma^\mu u_t)$
$Q_{qq}^{(3)}$	$(\bar{q}_p \gamma_\mu \tau^I q_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$	Q_{dd}	$(\bar{d}_p \gamma_\mu d_r) (\bar{d}_s \gamma^\mu d_t)$	$Q_{\ell d}$	$(\bar{\ell}_p \gamma_\mu \ell_r) (\bar{d}_s \gamma^\mu d_t)$
$Q_{\ell q}^{(1)}$	$(\bar{\ell}_p \gamma_\mu \ell_r) (\bar{q}_s \gamma^\mu q_t)$	Q_{eu}	$(\bar{e}_p \gamma_\mu e_r) (\bar{u}_s \gamma^\mu u_t)$	Q_{qe}	$(\bar{q}_p \gamma_\mu q_r) (\bar{e}_s \gamma^\mu e_t)$
$Q_{\ell q}^{(3)}$	$(\bar{\ell}_p \gamma_\mu \tau^I \ell_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$	Q_{ed}	$(\bar{e}_p \gamma_\mu e_r) (\bar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r)(\bar{u}_s \gamma^\mu u_t)$
		$Q_{ud}^{(1)}$	$(\bar{u}_p \gamma_\mu u_r) (\bar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(8)}$	$(\bar{q}_p \gamma_\mu T^A q_r) (\bar{u}_s \gamma^\mu T^A u_t)$
		$Q_{ud}^{(8)}$	$(\bar{u}_p \gamma_\mu T^A u_r) (\bar{d}_s \gamma^\mu T^A d_t)$	$Q_{qd}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r) (\bar{d}_s \gamma^\mu d_t)$
				$Q_{ad}^{(8)}$	$(\bar{q}_p \gamma_\mu T^A q_r) (\bar{d}_s \gamma^\mu T^A d_t)$

non-hermitian						
$(\bar{L}R)(\bar{R}L)$			$(\bar{L}R)(\bar{L}R)$			
	$Q_{\ell edq}$	$(\bar{\ell}_p^j e_r)(\bar{d}_s q_{tj})$	$Q_{quqd}^{(1)}$	$(\bar{q}_p^j u_r) \epsilon_{jk} (\bar{q}_s^k d_t)$		
			$Q_{quqd}^{(8)}$	$(\bar{q}_p^j T^A u_r) \epsilon_{jk} (\bar{q}_s^k T^A d_t)$		
			$Q_{\ell equ}^{(1)}$	$(\bar{\ell}_p^j e_r) \epsilon_{jk} (\bar{q}_s^k u_t)$		
			$Q^{(3)}_{\ell equ}$	$(\bar{\ell}_p^j \sigma_{\mu\nu} e_r) \epsilon_{jk} (\bar{q}_s^k \sigma^{\mu\nu} u_t)$		