

$\begin{array}{l} \text{High-}p_{T} \text{ constraints} \\ \text{for semileptonic operators} \\ \text{in the SMEFT} \end{array}$

Felix Wilsch

Universität Zürich

Work in progress with: L. Allwicher, D. A. Faroughy, F. Jaffredo, O. Sumensari [2206.xxxx] & [2206.xxxx]

Higgs and Effective Field Theory – HEFT 2022 – Universidad de Granada

16. June 2022

Motivation

- Most parameters in the SMEFT come from flavor \rightarrow see Admir's talk
 - d = 6: 59 electroweak structures \leftrightarrow 2499 parameters
 - How to constrain all these parameters?
- Indication of LFUV in semileptonic *B* decays \rightarrow due to NP? Leptoquarks?

$$R_{D^{(*)}} = \frac{\mathscr{B}\left(B \to D^{(*)}\tau\nu\right)}{\mathscr{B}\left(B \to D^{(*)}\ell\nu\right)} \xrightarrow{b} \overbrace{c}^{\tau} R_{K^{(*)}} = \frac{\mathscr{B}\left(B \to K^{(*)}\mu\mu\right)}{\mathscr{B}\left(B \to K^{(*)}ee\right)} \xrightarrow{b} \overbrace{s}^{\mu^{+}}$$

 \rightarrow see Peter's talk

see e.g. also: Crivellin, Muller, Ota [1703.09226], Butazzo et al [1706.07808], Marzocca [1803.10972], Becirevic et al [1808.08179], ...

- Effects possibly measurable also in other semileptonic transitions
- Analysis of high- p_T Drell-Yan tails as high-energy probes of these semileptonic transitions

Low- & high-energy constraints

High- p_T searches (CMS and ATLAS) can probe the same operators constrained by flavor-physics experiments (NA62, KOTO, BES-III, LHCb, Belle-II, ...)

Universität

Zürich

Di-tau tails as NP probes

 $m_{\ell\ell}$

600

If there is NP in semileptonic transitions:

- Expect deviations in high- p_T tails of invariant / transverse mass distributions
- For large 3rd generation couplings: in particular τ tails are relevant Faroughy, Greljo, Kamenik [1609.07138]

Ons 1 0.100 0.010 0.001 - NP 0.001 - NP 0.001 - SM 10^{-4} 10^{-5} 10^{-6} HighPT - 100 200 300 400 500 6

b

 $\mathrm{d}\sigma$

 $\overline{\mathrm{d}m_{\ell\ell}}$

[pb]

Felix Wilsch

High- $p_{\rm T}$ constraints for semileptonic operators in the SMEFT – HEFT 2022

Flavor in Drell-Yan tails

- Drell-Yan production at LHC:
 - NC: $pp \rightarrow \ell_{\alpha}^{+} \ell_{\beta}^{-}$
 - CC: $pp \rightarrow \ell_{\alpha} \nu_{\beta}$
- Hadronic cross-section:

$$\sigma_{\text{had}}(pp \to \ell_{\alpha} \ell_{\beta}) = L_{ij} \otimes [\hat{\sigma}]_{ij}^{\alpha\beta}$$

- L_{ij} parton-parton luminosities / PDFs
 - Heavy flavor suppressed

$$[\hat{\sigma}]_{ij}^{\alpha\beta} = \hat{\sigma}(q_i \bar{q}_j \to \ell_{\alpha} \ell_{\beta})$$

hard-scattering: energy enhanced in EFT

$$\hat{\sigma}(q\bar{q} \to \ell^+ \ell^-) \propto \frac{\hat{s}}{\Lambda^4} \left| C \right|^2 \qquad \hat{s} \ll \Lambda^2$$

Angelescu, Faroughy, Sumensari [2002.05684]

Can overcome PDF suppression

Flavor in Drell-Yan tails

- Drell-Yan production at LHC:
 - NC: $pp \rightarrow \ell_{\alpha}^{+} \ell_{\beta}^{-}$
 - CC: $pp \rightarrow \ell_{\alpha} \nu_{\beta}$
- Hadronic cross-section:

$$\sigma_{\text{had}}(pp \to \ell_{\alpha} \ell_{\beta}) = L_{ij} \otimes [\hat{\sigma}]_{ij}^{\alpha\beta}$$

- L_{ij} parton-parton luminosities / PDFs
 - Heavy flavor suppressed

$$[\hat{\sigma}]_{ij}^{\alpha\beta} = \hat{\sigma}(q_i \bar{q}_j \to \ell_{\alpha} \ell_{\beta})$$

hard-scattering: energy enhanced in EFT

$$\hat{\sigma}(q\bar{q} \to \ell^+ \ell^-) \propto \frac{\hat{s}}{\Lambda^4} \left| C \right|^2 \qquad \hat{s} \ll \Lambda^2$$

Can overcome PDF suppression

$$\mathcal{L}_{ij}(\hat{s}) = \int_{\frac{\hat{s}}{s}}^{1} \frac{\mathrm{d}x}{x} \left[f_{\bar{q}_i}(x,\mu) f_{q_j}\left(\frac{\hat{s}}{sx},\mu\right) + (\bar{q}_i \leftrightarrow q_j) \right]$$

Angelescu, Faroughy, Sumensari [2002.05684]

Universität

Flavor in Drell-Yan tails

- NC: $pp \rightarrow \ell_{\alpha}^{+} \ell_{\beta}^{-}$
- CC: $pp \rightarrow \ell_{\alpha} \nu_{\beta}$

$$\mathcal{L}_{ij}(\hat{s}) = \int_{\frac{\hat{s}}{s}}^{1} \frac{\mathrm{d}x}{x} \left[f_{\bar{q}_i}(x,\mu) f_{q_j}\left(\frac{\hat{s}}{sx},\mu\right) + (\bar{q}_i \leftrightarrow q_j) \right]$$

• Hadronic cross-section:

$$\sigma_{\text{had}}(pp \to \ell_{\alpha} \ell_{\beta}) = L_{ij} \otimes \left[\hat{\sigma}\right]_{ij}^{\alpha\beta}$$

- L_{ij} parton-parton luminosities / PDFs
 - Heavy flavor suppressed

$$- [\hat{\sigma}]_{ij}^{\alpha\beta} = \hat{\sigma}(q_i \bar{q}_j \to \ell_{\alpha} \ell_{\beta})$$

hard-scattering: energy enhanced in EFT

$$\hat{\sigma}(q\bar{q} \to \ell^+ \ell^-) \propto \frac{\hat{s}}{\Lambda^4} \left| C \right|^2 \qquad \hat{s} \ll \Lambda^2$$

Can overcome PDF suppression

Angelescu, Faroughy, Sumensari [2002.05684]

Universität

Complementarity of high- $p_{\rm T}$ data

Constraints on:

Felix Wilsch

- $D \operatorname{decays} (c \to u\ell\ell)$
- Drell-Yan $(cu \rightarrow \ell \ell)$
- Possibility of probing charm transitions much better than low energy experiments

Fuentes-Martin, Greljo, Camalich, Ruiz-Alvarez [2003.12421]

Further examples for complementary of high- p_T and low-energy data: de Blas, Chala, Santiago [1307.5068] Angelescu, Faroughy, Sumensari [2002.05684] Dawson, Giardino, Ismail [1811.12260] Marzocca, Min, Son [2008.07541] ...

Universität

Zürich

Drell-Yan cross-section

A general form-factor description

Drell-Yan form-factors

 ℓ_{α}

p q_j

• Drell-Yan processes:

 $\bar{u}_i u_j \to \ell_\alpha^- \ell_\beta^+, \quad \bar{d}_i d_j \to \ell_\alpha^- \ell_\beta^+, \quad \bar{u}_i d_j \to \ell_\alpha^- \bar{\nu}_\beta, \quad \bar{d}_i u_j \to \ell_\alpha^+ \nu_\beta$

• Amplitude form-factor decomposition:

$$\begin{split} \left[\mathcal{A}\right]_{ij}^{\alpha\beta} &\equiv \mathcal{A}\left(\bar{q}_{i}q'_{j} \rightarrow \bar{\ell}_{\alpha}\ell'_{\beta}\right) \\ &= \frac{1}{v^{2}}\sum_{X,Y} \left\{ \left(\bar{\ell}_{\alpha}\mathbb{P}_{X}\ell'_{\beta}\right) \left(\bar{q}_{i}\mathbb{P}_{Y}q'_{j}\right) \left[\mathcal{F}_{S}^{XY,qq'}(\hat{s},\hat{t})\right]_{ij}^{\alpha\beta} \quad \text{Scalar} \\ &+ \left(\bar{\ell}_{\alpha}\gamma_{\mu}\mathbb{P}_{X}\ell'_{\beta}\right) \left(\bar{q}_{i}\gamma^{\mu}\mathbb{P}_{Y}q'_{j}\right) \left[\mathcal{F}_{V}^{XY,qq'}(\hat{s},\hat{t})\right]_{ij}^{\alpha\beta} \quad \text{Vector} \\ &+ \left(\bar{\ell}_{\alpha}\sigma_{\mu\nu}\mathbb{P}_{X}\ell'_{\beta}\right) \left(\bar{q}_{i}\sigma^{\mu\nu}\mathbb{P}_{Y}q'_{j}\right) \delta^{XY} \left[\mathcal{F}_{D_{q}}^{XY,qq'}(\hat{s},\hat{t})\right]_{ij}^{\alpha\beta} \quad \text{Tensor} \\ &+ \left(\bar{\ell}_{\alpha}\sigma_{\mu\nu}\mathbb{P}_{X}\ell'_{\beta}\right) \left(\bar{q}_{i}\sigma^{\mu\nu}\mathbb{P}_{Y}q'_{j}\right) \frac{ik_{\nu}}{v} \left[\mathcal{F}_{D_{q}}^{XY,qq'}(\hat{s},\hat{t})\right]_{ij}^{\alpha\beta} \quad \text{Dipole} \\ &+ \left(\bar{\ell}_{\alpha}\sigma_{\mu\nu}\mathbb{P}_{X}\ell'_{\beta}\right) \left(\bar{q}_{i}\gamma^{\mu}\mathbb{P}_{Y}q'_{j}\right) \frac{ik^{\nu}}{v} \left[\mathcal{F}_{D_{\ell}}^{XY,qq'}(\hat{s},\hat{t})\right]_{ij}^{\alpha\beta} \quad \text{Dipole} \end{split}$$

- General parametrization of tree-level effects invariant under $SU(3)_c \times U(1)_e$
- Captures local and non-local effects

Felix Wilsch

Local and non-local contributions

Split form-factors into a regular and a singular piece

$$\mathcal{F}_{I}(\hat{s}, \hat{t}) = \mathcal{F}_{I, \operatorname{Reg}}(\hat{s}, \hat{t}) + \mathcal{F}_{I, \operatorname{Poles}}(\hat{s}, \hat{t})$$

Form-factor framework can incorporate both EFT and explicit NP models

Felix Wilsch

Local and non-local contributions

Split form-factors into a regular and a singular piece

$$\mathcal{F}_{I}(\hat{s},\hat{t}) = \mathcal{F}_{I,\operatorname{Reg}}(\hat{s},\hat{t}) + \mathcal{F}_{I,\operatorname{Poles}}(\hat{s},\hat{t})$$

- Analytic function of \hat{s} , \hat{t}
- Describes EFT contact interactions
 - Can be matched to the SMEFT
- Formal expansion in validity range of the EFT: v^2 , $|\hat{s}|$, $|\hat{t}| < \Lambda^2$

$$F_{I,Reg}(\hat{s},\hat{t}) = \sum_{n,m=0}^{\infty} F_{I,(n,m)} \left(\frac{\hat{s}}{v^2}\right)^n \left(\frac{\hat{t}}{v^2}\right)^m$$

Form-factor framework can incorporate both EFT and explicit NP models

Local and non-local contributions

Split form-factors into a regular and a singular piece

$$\mathcal{F}_{I}(\hat{s},\hat{t}) = \mathcal{F}_{I,\operatorname{Reg}}(\hat{s},\hat{t}) + \mathcal{F}_{I,\operatorname{Poles}}(\hat{s},\hat{t})$$

- Analytic function of \hat{s} , \hat{t}
- Describes EFT contact interactions
 - Can be matched to the SMEFT
- Formal expansion in validity range of the EFT: v^2 , $|\hat{s}|$, $|\hat{t}| < \Lambda^2$

$$F_{I,Reg}(\hat{s},\hat{t}) = \sum_{n,m=0}^{\infty} F_{I,(n,m)} \left(\frac{\hat{s}}{v^2}\right)^n \left(\frac{\hat{t}}{v^2}\right)^n$$

- Isolated simple poles in \hat{s} , \hat{t} (no branch-cuts at tree-level)

- Describes non-local effects due to exchange of mediators (SM & NP)

$$F_{I,\text{Poles}}(\hat{s},\hat{t}) = \sum_{a} \frac{v^2 \mathcal{S}_{I(a)}}{\hat{s} - \Omega_a} + \sum_{b} \frac{v^2 \mathcal{T}_{I(b)}}{\hat{t} - \Omega_b} - \sum_{c} \frac{v^2 \mathcal{U}_{I(c)}}{\hat{s} + \hat{t} + \Omega_c}$$

$$MP$$

$$SM \ (I=V) \qquad NP$$

$$\hat{\Omega}_n = m_n^2 - im_n \Gamma_n \qquad \hat{u} = -\hat{s} - \hat{t}$$

Form-factor framework can incorporate both EFT and explicit NP models

Felix Wilsch

SMEFT

$$\mathscr{L}_{\text{SMEFT}} = \mathscr{L}_{\text{SM}} + \sum_{i} \frac{C_i^{(6)}}{\Lambda^2} Q_i^{(6)} + \sum_{i} \frac{C_i^{(8)}}{\Lambda^4} Q_i^{(8)} + \mathcal{O}(\Lambda^{-6})$$

• Cross-section in the SMEFT to $\mathcal{O}(\Lambda^{-4})$

$$\sigma \sim \left|A_{\rm SM}\right|^2 + \frac{1}{\Lambda^2} 2\operatorname{Re}\left(A^{(6)}A_{\rm SM}^*\right) + \frac{1}{\Lambda^4}\left(\left|A^{(6)}\right|^2 + 2\operatorname{Re}\left(A^{(8)}A_{\rm SM}^*\right)\right) + \mathcal{O}(\Lambda^{-6})$$

- Consistent description up to $\mathcal{O}(\Lambda^{-4})$
 - $|A^{(6)}|^2$ contribution can be energy enhanced
 - LFV only through $|A^{(6)}|^2$ (no SM interference)
- Requires inclusion of d = 8 operators Boughezal, Mereghetti, Petriello [2106.05337]
 - Only d = 8 interference with SM relevant

SMEFT

$$\mathscr{L}_{\text{SMEFT}} = \mathscr{L}_{\text{SM}} + \sum_{i} \frac{C_i^{(6)}}{\Lambda^2} Q_i^{(6)} + \sum_{i} \frac{C_i^{(8)}}{\Lambda^4} Q_i^{(8)} + \mathcal{O}(\Lambda^{-6})$$

• Cross-section in the SMEFT to $\mathcal{O}(\Lambda^{-4})$

$$\sigma \sim \left|A_{\rm SM}\right|^2 + \frac{1}{\Lambda^2} 2\operatorname{Re}\left(A^{(6)}A_{\rm SM}^*\right) + \frac{1}{\Lambda^4}\left(\left|A^{(6)}\right|^2 + 2\operatorname{Re}\left(A^{(8)}A_{\rm SM}^*\right)\right) + \mathcal{O}(\Lambda^{-6})$$

- Consistent description up to $\mathcal{O}(\Lambda^{-4})$
 - $|A^{(6)}|^2$ contribution can be energy enhanced
 - LFV only through $|A^{(6)}|^2$ (no SM interference)
- Requires inclusion of d = 8 operators Boughezal, Mereghetti, Petriello [2106.05337]
 - Only d = 8 interference with SM relevant

• d = 6 Warsaw basis $\psi^4, \psi^2 H^2 D, \psi^2 X H$

Grzadkowski, Iskrzynski, Misiak, Rosiek [1008.4884]

• d = 8 basis (C. Murphy) $\psi^4 D^2$, $\psi^4 H^2$, $\psi^2 H^2 D^3$, $\psi^2 H^4 D$

 ψ^4 contact interactions non-local contributions Murphy [2005.00059]

see also: Li et al [2005.00008]

EFT contributions

• Feynman diagrams for Drell-Yan in the SMEFT to $\mathcal{O}(\Lambda^{-4})$

EFT operator counting and energy scaling

Dimension	d=6			d=8			
Operator classes	ψ^4	$\psi^2 H^2 D$	$\psi^2 X H$	$\psi^4 D^2$	$\psi^4 H^2$	$\psi^2 H^4 D$	$\psi^2 H^2 D^3$
Amplitude scaling	E^2/Λ^2	v^2/Λ^2	vE/Λ^2	E^4/Λ^4	$v^2 E^2 / \Lambda^4$	v^4/Λ^4	$v^2 E^2/\Lambda^4$

Only contributions interfering with the SM

EFT contributions

• Feynman diagrams for Drell-Yan in the SMEFT to $\mathcal{O}(\Lambda^{-4})$

EFT operator counting and energy scaling

Dimension		d = 6			d :	= 8	
Operator classes	ψ^4	$\psi^2 H^2 D$	$\psi^2 X H$	$\psi^4 D^2$	$\psi^4 H^2$	$\psi^2 H^4 D$	$\psi^2 H^2 D^3$
Amplitude scaling	E^2/Λ^2	v^2/Λ^2	vE/Λ^2	E^4/Λ^4	$v^2 E^2 / \Lambda^4$	v^4/Λ^4	$v^2 E^2/\Lambda^4$
Only contributions interfering with the SM Most enhanced contributions						with the SM	

• Example: vector form-factors
$$\begin{array}{l} \text{NC: } a \in \{\gamma, Z\} \\ \text{CC: } a \in \{W\} \end{array} \\ F_V = F_{V(0,0)} + F_{V(1,0)} \frac{\hat{s}}{v^2} + F_{V(0,1)} \frac{\hat{t}}{v^2} + \sum_a \frac{v^2}{\hat{s} - M_a^2 + iM_a\Gamma_A} \left(\mathscr{S}_{(a,\text{SM})} + \delta \mathscr{S}_{(a)} \right) \end{array}$$

Schematic form-factor matching to $\mathcal{O}(\Lambda^{-4})$: •

$$F_{V(0,0)} = \frac{v^2}{\Lambda^2} C_{\psi^4}^{(6)} + \frac{v^4}{\Lambda^4} C_{\psi^4 H^2}^{(8)} + \frac{v^2 m_a^2}{\Lambda^4} C_{\psi^2 H^2 D^3}^{(8)} + \cdots$$

$$F_{V(1,0)} = \frac{v^4}{\Lambda^4} C_{\psi^4 D^2}^{(8)} + \cdots$$

$$F_{V(0,1)} = \frac{v^4}{\Lambda^4} C_{\psi^4 D^2}^{(8)} + \cdots$$

$$\delta \mathcal{S}_{(a)} = \frac{m_a^2}{\Lambda^2} C_{\psi^2 H^2 D}^{(6)} + \frac{v^2 m_a^2}{\Lambda^4} \left(\left[C_{\psi^2 H^2 D}^{(6)} \right]^2 + C_{\psi^2 H^4 D}^{(8)} \right) + \frac{m_a^4}{\Lambda^4} C_{\psi^2 H^2 D^3}^{(8)} + \cdots$$

- NC: $a \in \{\gamma, Z\}$ **Example: vector form-factors** CC: $a \in \{W\}$ $F_{V} = F_{V(0,0)} + F_{V(1,0)} \frac{\hat{s}}{v^{2}} + F_{V(0,1)} \frac{\hat{t}}{v^{2}} + \sum_{a}^{\bullet} \frac{v^{2}}{\hat{s} - M_{a}^{2} + iM_{a}\Gamma_{A}} \left(\mathcal{S}_{(a,\text{SM})} + \delta \mathcal{S}_{(a)} \right)$
- Schematic form-factor matching to $\mathcal{O}(\Lambda^{-4})$:

$$F_{V(0,0)} = \frac{v^2}{\Lambda^2} C_{\psi^4}^{(6)} + \frac{v^4}{\Lambda^4} C_{\psi^4 H^2}^{(8)} + \frac{v^2 m_a^2}{\Lambda^4} C_{\psi^2 H^2 D^3}^{(8)} + \cdots$$

$$\mathcal{S}_{(\gamma,\text{SM})} = 4\pi\alpha_{\text{em}}Q_lQ_q$$
$$\mathcal{S}_{(Z,\text{SM})} = \frac{4\pi\alpha_{\text{em}}}{c_W^2 s_W^2}g_l^X g_q^Y$$
$$\mathcal{S}_{(W,\text{SM})} = \frac{1}{2}g_2^2$$

$$F_{V(1,0)} = \frac{v^4}{\Lambda^4} C_{\psi^4 D^2}^{(8)} + \cdots$$

$$F_{V(0,1)} = \frac{v^4}{\Lambda^4} C_{\psi^4 D^2}^{(8)} + \cdots$$

$$\delta \mathcal{S}_{(a)} = \frac{m_a^2}{\Lambda^2} C_{\psi^2 H^2 D}^{(6)} + \frac{v^2 m_a^2}{\Lambda^4} \left(\left[C_{\psi^2 H^2 D}^{(6)} \right]^2 + C_{\psi^2 H^4 D}^{(8)} \right) + \frac{m_a^4}{\Lambda^4} C_{\psi^2 H^2 D^3}^{(8)} + \cdots$$

• Schematic form-factor matching to $\mathscr{O}(\Lambda^{-4})$:

$$F_{V(0,0)} = \frac{v^2}{\Lambda^2} C_{\psi^4}^{(6)} + \frac{v^4}{\Lambda^4} C_{\psi^4 H^2}^{(8)} + \frac{v^2 m_a^2}{\Lambda^4} C_{\psi^2 H^2 D^3}^{(8)} + \cdots$$

$$S_{(\gamma,\text{SM})} = 4\pi\alpha_{\text{em}}Q_lQ_q$$
$$S_{(Z,\text{SM})} = \frac{4\pi\alpha_{\text{em}}}{c_W^2 s_W^2} g_l^X g_q^Y$$
$$S_{(W,\text{SM})} = \frac{1}{2}g_2^2$$

$$F_{V(1,0)} = \frac{v^4}{\Lambda^4} C_{\psi^4 D^2}^{(8)} + \cdots$$

$$F_{V(0,1)} = \frac{v^4}{\Lambda^4} C_{\psi^4 D^2}^{(8)} + \cdots$$

$$\delta \mathcal{S}_{(a)} = \frac{m_a^2}{\Lambda^2} C_{\psi^2 H^2 D}^{(6)} + \frac{v^2 m_a^2}{\Lambda^4} \left(\left[C_{\psi^2 H^2 D}^{(6)} \right]^2 + C_{\psi^2 H^4 D}^{(8)} \right) + \frac{m_a^4}{\Lambda^4} C_{\psi^2 H^2 D^3}^{(8)} + \cdots$$

• Example: vector form-factors
$$\sum_{C:a \in \{Y,Z\}}^{NC:a \in \{Y,Z\}}$$
 include BSM mediators similarly
 $F_V = F_{V(0,0)} + F_{V(1,0)} \frac{\hat{s}}{v^2} + F_{V(0,1)} \frac{\hat{t}}{v^2} + \sum_a \frac{v^2}{\hat{s} - M_a^2 + iM_a\Gamma_A} \left(\mathcal{S}_{(a,SM)} + \delta \mathcal{S}_{(a)} \right)$
• Schematic form-factor matching to $\mathcal{O}(\Lambda^{-4})$:
 $F_{V(0,0)} = \frac{v^2}{\Lambda^2} C_{\psi^4}^{(6)} + \frac{v^4}{\Lambda^4} C_{\psi^4H^2}^{(8)} + \frac{v^2 m_a^2}{\Lambda^4} C_{\psi^2H^2D^3}^{(8)} + \cdots$
 $F_{V(1,0)} = \frac{v^4}{\Lambda^4} C_{\psi^4D^2}^{(8)} + \cdots$
 $F_{V(0,1)} = \frac{v^4}{\Lambda^4} C_{\psi^4D^2}^{(8)} + \cdots$
 $\delta \mathcal{S}_{(a)} = \frac{m_a^2}{\Lambda^2} C_{\psi^2H^2D}^{(6)} + \frac{v^2 m_a^2}{\Lambda^4} \left(\left[C_{\psi^2H^2D}^{(6)} \right]^2 + C_{\psi^2H^4D}^{(8)} \right) + \frac{m_a^4}{\Lambda^4} C_{\psi^2H^2D^3}^{(8)} + \cdots$

Amplitude parametrization

$$\begin{split} [\mathcal{A}]_{ij}^{\alpha\beta} &\equiv \mathcal{A}\left(\bar{q}_{i}q_{j}' \rightarrow \bar{\ell}_{\alpha}\ell_{\beta}'\right) \\ &= \frac{1}{v^{2}}\sum_{X,Y} \left\{ \left(\bar{\ell}_{\alpha}\mathbb{P}_{X}\ell_{\beta}'\right) \left(\bar{q}_{i}\mathbb{P}_{Y}q_{j}'\right) \left[\mathcal{F}_{S}^{XY,qq'}(\hat{s},\hat{t})\right]_{ij}^{\alpha\beta} \\ &+ \left(\bar{\ell}_{\alpha}\gamma_{\mu}\mathbb{P}_{X}\ell_{\beta}'\right) \left(\bar{q}_{i}\gamma^{\mu}\mathbb{P}_{Y}q_{j}'\right) \left[\mathcal{F}_{V}^{XY,qq'}(\hat{s},\hat{t})\right]_{ij}^{\alpha\beta} \\ &+ \left(\bar{\ell}_{\alpha}\sigma_{\mu\nu}\mathbb{P}_{X}\ell_{\beta}'\right) \left(\bar{q}_{i}\sigma^{\mu\nu}\mathbb{P}_{Y}q_{j}'\right) \delta^{XY} \left[\mathcal{F}_{T}^{XY,qq'}(\hat{s},\hat{t})\right]_{ij}^{\alpha\beta} \\ &+ \left(\bar{\ell}_{\alpha}\gamma_{\mu}\mathbb{P}_{X}\ell_{\beta}'\right) \left(\bar{q}_{i}\gamma^{\mu}\mathbb{P}_{Y}q_{j}'\right) \frac{ik_{\nu}}{v} \left[\mathcal{F}_{D_{q}}^{XY,qq'}(\hat{s},\hat{t})\right]_{ij}^{\alpha\beta} \\ &+ \left(\bar{\ell}_{\alpha}\sigma_{\mu\nu}\mathbb{P}_{X}\ell_{\beta}'\right) \left(\bar{q}_{i}\gamma^{\mu}\mathbb{P}_{Y}q_{j}'\right) \frac{ik^{\nu}}{v} \left[\mathcal{F}_{D_{\ell}}^{XY,qq'}(\hat{s},\hat{t})\right]_{ij}^{\alpha\beta} \\ &\mathsf{Dipole} \end{split}$$

Amplitude parametrization

$$\begin{split} \left[\mathcal{A}\right]_{ij}^{\alpha\beta} &\equiv \mathcal{A}\left(\bar{q}_{i}q_{j}^{\prime} \rightarrow \bar{\ell}_{\alpha}\ell_{\beta}^{\prime}\right) \\ &= \frac{1}{v^{2}}\sum_{X,Y} \left\{ \left(\bar{\ell}_{\alpha}\mathbb{P}_{X}\ell_{\beta}^{\prime}\right) \left(\bar{q}_{i}\mathbb{P}_{Y}q_{j}^{\prime}\right) \left[\mathcal{F}_{S}^{XY,qq^{\prime}}\left(\hat{s},\hat{t}\right)\right]_{ij}^{\alpha\beta} \right. \\ &+ \left(\bar{\ell}_{\alpha}\gamma_{\mu}\mathbb{P}_{X}\ell_{\beta}^{\prime}\right) \left(\bar{q}_{i}\gamma^{\mu}\mathbb{P}_{Y}q_{j}^{\prime}\right) \left[\mathcal{F}_{V}^{XY,qq^{\prime}}\left(\hat{s},\hat{t}\right)\right]_{ij}^{\alpha\beta} \right. \\ &+ \left(\bar{\ell}_{\alpha}\sigma_{\mu\nu}\mathbb{P}_{X}\ell_{\beta}^{\prime}\right) \left(\bar{q}_{i}\sigma^{\mu\nu}\mathbb{P}_{Y}q_{j}^{\prime}\right) \delta^{XY} \left[\mathcal{F}_{T}^{XY,qq^{\prime}}\left(\hat{s},\hat{t}\right)\right]_{ij}^{\alpha\beta} \right. \\ &+ \left(\bar{\ell}_{\alpha}\sigma_{\mu\nu}\mathbb{P}_{X}\ell_{\beta}^{\prime}\right) \left(\bar{q}_{i}\gamma^{\mu}\mathbb{P}_{Y}q_{j}^{\prime}\right) \frac{ik_{\nu}}{v} \left[\mathcal{F}_{D_{q}}^{XY,qq^{\prime}}\left(\hat{s},\hat{t}\right)\right]_{ij}^{\alpha\beta} \right. \\ &\left. \left. \left(\bar{\ell}_{\alpha}\sigma_{\mu\nu}\mathbb{P}_{X}\ell_{\beta}^{\prime}\right) \left(\bar{q}_{i}\gamma^{\mu}\mathbb{P}_{Y}q_{j}^{\prime}\right) \frac{ik^{\nu}}{v} \left[\mathcal{F}_{D_{\ell}}^{XY,qq^{\prime}}\left(\hat{s},\hat{t}\right)\right]_{ij}^{\alpha\beta} \right\} \end{split}$$

Hadronic cross-section

$$\sigma_{\mathcal{B}}(pp \to \ell_{\alpha}^{-}\ell_{\beta}^{+}) = \frac{1}{48\pi v^{2}} \sum_{XY,IJ} \sum_{ij} \int_{m_{\ell\ell_{0}}^{2}}^{m_{\ell\ell_{1}}^{2}} \frac{\mathrm{d}\hat{s}}{s} \int_{-\hat{s}}^{0} \frac{\mathrm{d}\hat{t}}{v^{2}} M_{IJ}^{XY} \mathcal{L}_{ij} \left[\mathcal{F}_{I}^{XY,qq}\right]_{ij}^{\alpha\beta} \left[\mathcal{F}_{J}^{XY,qq}\right]_{ij}^{\alpha\beta*}$$

Amplitude parametrization

$$\begin{split} \left[\mathcal{A}\right]_{ij}^{\alpha\beta} &\equiv \mathcal{A}\left(\bar{q}_{i}q_{j}' \rightarrow \bar{\ell}_{\alpha}\ell_{\beta}'\right) \\ &= \frac{1}{v^{2}}\sum_{X,Y} \left\{ \left(\bar{\ell}_{\alpha}\mathbb{P}_{X}\ell_{\beta}'\right) \left(\bar{q}_{i}\mathbb{P}_{Y}q_{j}'\right) \left[\mathcal{F}_{S}^{XY,qq'}(\hat{s},\hat{t})\right]_{ij}^{\alpha\beta} \\ &+ \left(\bar{\ell}_{\alpha}\gamma_{\mu}\mathbb{P}_{X}\ell_{\beta}'\right) \left(\bar{q}_{i}\gamma^{\mu}\mathbb{P}_{Y}q_{j}'\right) \left[\mathcal{F}_{V}^{XY,qq'}(\hat{s},\hat{t})\right]_{ij}^{\alpha\beta} \\ &+ \left(\bar{\ell}_{\alpha}\sigma_{\mu\nu}\mathbb{P}_{X}\ell_{\beta}'\right) \left(\bar{q}_{i}\sigma^{\mu\nu}\mathbb{P}_{Y}q_{j}'\right) \delta^{XY} \left[\mathcal{F}_{T}^{XY,qq'}(\hat{s},\hat{t})\right]_{ij}^{\alpha\beta} \\ &+ \left(\bar{\ell}_{\alpha}\sigma_{\mu\nu}\mathbb{P}_{X}\ell_{\beta}'\right) \left(\bar{q}_{i}\gamma^{\mu}\mathbb{P}_{Y}q_{j}'\right) \frac{ik_{\nu}}{v} \left[\mathcal{F}_{D_{q}}^{XY,qq'}(\hat{s},\hat{t})\right]_{ij}^{\alpha\beta} \\ &+ \left(\bar{\ell}_{\alpha}\sigma_{\mu\nu}\mathbb{P}_{X}\ell_{\beta}'\right) \left(\bar{q}_{i}\gamma^{\mu}\mathbb{P}_{Y}q_{j}'\right) \frac{ik^{\nu}}{v} \left[\mathcal{F}_{D_{\ell}}^{XY,qq'}(\hat{s},\hat{t})\right]_{ij}^{\alpha\beta} \\ &\text{Dipole} \end{split}$$

Interference matrix

$$M_{SS} = 1/4 \,,$$

 $M_{VV}(x) = (1+2x)\delta^{XY} + x^2 \,,$
 $M_{TT}(x) = 4(1+2x)^2\delta^{XY} \,,$
 $M_{DD}(x) = -x(1+x) \,,$
 $M_{ST}(x) = -(1+2x)\delta^{XY} \,,$

Hadronic cross-section

$$\sigma_{\mathcal{B}}(pp \to \ell_{\alpha}^{-}\ell_{\beta}^{+}) = \frac{1}{48\pi v^{2}} \sum_{XY,IJ} \sum_{ij} \int_{m_{\ell\ell_{0}}^{2}}^{m_{\ell\ell_{1}}^{2}} \frac{\mathrm{d}\hat{s}}{s} \int_{-\hat{s}}^{0} \frac{\mathrm{d}\hat{t}}{v^{2}} M_{IJ}^{XY} \mathcal{L}_{ij} \left[\mathcal{F}_{I}^{XY,qq}\right]_{ij}^{\alpha\beta} \left[\mathcal{F}_{J}^{XY,qq}\right]_{ij}^{\alpha\beta*}$$

Amplitude parametrization

$$\begin{split} \left[\mathcal{A} \right]_{ij}^{\alpha\beta} &\equiv \mathcal{A} \left(\bar{q}_{i} q_{j}' \rightarrow \bar{\ell}_{\alpha} \ell_{\beta}' \right) \\ &= \frac{1}{v^{2}} \sum_{X,Y} \left\{ \left(\bar{\ell}_{\alpha} \mathbb{P}_{X} \ell_{\beta}' \right) \left(\bar{q}_{i} \mathbb{P}_{Y} q_{j}' \right) \left[\mathcal{F}_{S}^{XY,qq'}(\hat{s}, \hat{t}) \right]_{ij}^{\alpha\beta} \right\} \\ &+ \left(\bar{\ell}_{\alpha} \gamma_{\mu} \mathbb{P}_{X} \ell_{\beta}' \right) \left(\bar{q}_{i} \gamma^{\mu} \mathbb{P}_{Y} q_{j}' \right) \left[\mathcal{F}_{V}^{XY,qq'}(\hat{s}, \hat{t}) \right]_{ij}^{\alpha\beta} \\ &+ \left(\bar{\ell}_{\alpha} \sigma_{\mu\nu} \mathbb{P}_{X} \ell_{\beta}' \right) \left(\bar{q}_{i} \sigma^{\mu\nu} \mathbb{P}_{Y} q_{j}' \right) \delta^{XY} \left[\mathcal{F}_{T}^{XY,qq'}(\hat{s}, \hat{t}) \right]_{ij}^{\alpha\beta} \\ &+ \left(\bar{\ell}_{\alpha} \sigma_{\mu\nu} \mathbb{P}_{X} \ell_{\beta}' \right) \left(\bar{q}_{i} \gamma^{\mu} \mathbb{P}_{Y} q_{j}' \right) \frac{i k_{\nu}}{v} \left[\mathcal{F}_{D_{\ell}}^{XY,qq'}(\hat{s}, \hat{t}) \right]_{ij}^{\alpha\beta} \\ &+ \left(\bar{\ell}_{\alpha} \sigma_{\mu\nu} \mathbb{P}_{X} \ell_{\beta}' \right) \left(\bar{q}_{i} \gamma^{\mu} \mathbb{P}_{Y} q_{j}' \right) \frac{i k^{\nu}}{v} \left[\mathcal{F}_{D_{\ell}}^{XY,qq'}(\hat{s}, \hat{t}) \right]_{ij}^{\alpha\beta} \\ &\text{Dipole} \end{split}$$

Interference matrix

$$M_{SS} = 1/4 \,,$$

 $M_{VV}(x) = (1+2x)\delta^{XY} + x^2 \,,$
 $M_{TT}(x) = 4(1+2x)^2\delta^{XY} \,,$
 $M_{DD}(x) = -x(1+x) \,,$
 $M_{ST}(x) = -(1+2x)\delta^{XY} \,,$

Hadronic cross-section

$$\sigma_{\mathcal{B}}(pp \to \ell_{\alpha}^{-}\ell_{\beta}^{+}) = \frac{1}{48\pi v^{2}} \sum_{XY,IJ} \sum_{ij} \int_{m_{\ell\ell_{0}}^{2}}^{m_{\ell\ell_{1}}^{2}} \frac{\mathrm{d}\hat{s}}{s} \int_{-\hat{s}}^{0} \frac{\mathrm{d}\hat{t}}{v^{2}} M_{IJ}^{XY} \mathcal{L}_{ij} \left[\mathcal{F}_{I}^{XY,qq}\right]_{ij}^{\alpha\beta} \left[\mathcal{F}_{J}^{XY,qq}\right]_{ij}^{\alpha\beta*}$$

Parton luminosity functions: $\mathcal{L}_{ij}(\hat{s}) = \int_{\frac{\hat{s}}{s}}^{1} \frac{\mathrm{d}x}{x} \left[f_{\bar{q}_i}(x,\mu) f_{q_j}\left(\frac{\hat{s}}{sx},\mu\right) + (\bar{q}_i \leftrightarrow q_j) \right]$

HighPT

High- p_T Tails A Mathematica code for high energy flavor physics

HighPT – functionalities

HighPT: High- P_T Tails

A Mathematica package for setting limits on generic NP in semileptonic transitions at high energies

- Large variety of NP scenario (by including the appropriate form-factors):
 - SMEFT d = 6, d = 8
 - UV mediators (all leptoquarks, other mediators to be added later)
- Computes cross-section as function of Wilson coefficients/coupling constants
- Translates cross-sections in estimates of event yields for the bins of experimental searches
- Constructs the likelihood for the NP model
 - Can be further analyzed in Mathematica or python (using WCxf format) Aebischer et al [1712.05298]
- Extract bound on form-factors / Wilson coefficients / NP coupling constants

From cross-sections to event yields

• High-*p_T* tail distributions:

- Particle-level distribution $\frac{d\sigma}{dx}$ computed from final state particles e, μ, τ, ν
- Detector-level distribution $\frac{d\sigma}{dx_{obs}}$ measured by experiments from reconstructed objects (isolated leptons, tagged jets, missing energy, ...)
- Both related by a kernel function κ(x_{obs} | x) encoding: object reconstruction efficiencies, detector response, phase-space mismatch

- Matrix K_{pq} extracted using MC simulations (MadGraph+Pythia+Delphes)
- Each combination of form-factors has its own kernel function

Felix Wilsch

Universität Zürich^{uzH}

LHC searches

Experimental searches available in **HighPT** (full LHC run-2 data sets):

Process	Experiment	Luminosity	$x_{ m obs}$	x	
$pp \rightarrow \tau \tau$	ATLAS	$139{ m fb}^{-1}$	$m_T^{ ext{tot}}(au_h^1, au_h^2, ot\!\!\!E_T)$	$m_{ au au}$	[2002.12223]
$pp ightarrow \mu \mu$	CMS	$140{\rm fb}^{-1}$	$m_{\mu\mu}$	$m_{\mu\mu}$	[2103.02708]
$pp \rightarrow ee$	CMS	$137{ m fb}^{-1}$	m_{ee}	m_{ee}	[2103.02708]
pp ightarrow au u	ATLAS	$139{ m fb}^{-1}$	$m_T(au_h, ot\!\!\!\!E_T)$	$p_T(au)$	[ATLAS-CONF-2021-025]
$pp ightarrow \mu u$	ATLAS	$139{\rm fb}^{-1}$	$m_T(\mu,, ot\!\!\!E_T)$	$p_T(\mu)$	[1906.05609]
$pp \rightarrow e\nu$	ATLAS	$139{\rm fb}^{-1}$	$m_T(e, { ot \! E}_T)$	$p_T(e)$	[1906.05609]
$pp \rightarrow \tau \mu$	CMS	$137.1{\rm fb}^{-1}$	$m^{ m col}_{ au_h \mu}$	$m_{ au\mu}$	[2205.06709]
$pp \to \tau e$	CMS	$137.1{\rm fb}^{-1}$	$m^{ m col}_{ au_h e}$	$m_{ au e}$	[2205.06709]
$pp ightarrow \mu e$	CMS	$137.1{\rm fb}^{-1}$	$m_{\mu e}$	$m_{\mu e}$	[2205.06709]

*more to be included in the future

Flavor fits

SMEFT and explicit NP models

Single Wilson coefficients fits

- LHC limits on single Wilson coefficients computing the cross-section to $\mathscr{O}(\Lambda^{-4})$
- Example: $Q_{lq}^{(3)} = (\bar{\ell}_{\alpha} \gamma^{\mu} \tau^{I} \ell_{\beta})(\bar{q}_{i} \gamma_{\mu} \tau^{I} q_{j})$ with $\Lambda = 1 \text{ TeV}$

– Contributions from $pp \to \ell \ell$ and $pp \to \ell \nu$

 \rightarrow Constraints on all (energy enhanced) d = 6, 8 operators derived with **HighPT**

Single Wilson coefficients fits

- LHC limits on single Wilson coefficients computing the cross-section to $\mathscr{O}(\Lambda^{-4})$
- Example: $Q_{lq}^{(3)} = (\bar{\ell}_{\alpha} \gamma^{\mu} \tau^{I} \ell_{\beta})(\bar{q}_{i} \gamma_{\mu} \tau^{I} q_{j})$ with $\Lambda = 1 \text{ TeV}$

– Contributions from $pp \to \ell\ell \ell$ and $pp \to \ell\nu$

Universität

Zürich

 \rightarrow Constraints on all (energy enhanced) d = 6, 8 operators derived with **HighPT**

U_1 Leptoquark (3, 1, 2/3)

• U_1 benchmark: $m_{U_1} = 2 \text{ TeV}$ possible model for $R_D^{(*)}$

$$\mathcal{L}_{U_1} = [x_1^L]^{i\alpha} \,\bar{q}_i \not\!\!U_1 l_\alpha + [x_1^R]^{i\alpha} \,\bar{d}_i \not\!\!U_1 e_\alpha + [\bar{x}_1^R]^{i\alpha} \,\bar{u}_i \not\!\!U_1 \nu_\alpha + \text{h.c.}$$

Felix Wilsch

U_1 Leptoquark (3, 1, 2/3)

• U_1 benchmark: $m_{U_1} = 2 \text{ TeV}$ possible model for $R_D^{(*)}$

 $\mathcal{L}_{U_1} = [x_1^L]^{i\alpha} \, \bar{q}_i \mathcal{V}_1 l_\alpha + [x_1^R]^{i\alpha} \, \bar{d}_i \mathcal{V}_1 e_\alpha + [\bar{x}_1^R]^{i\alpha} \, \bar{u}_i \mathcal{V}_1 \nu_\alpha + \text{h.c.}$

SMEFT fit

U_1 Leptoquark (3, 1, 2/3)

• U_1 benchmark: $m_{U_1} = 2 \text{ TeV}$ possible model for $R_D^{(*)}$

 $\mathcal{L}_{U_1} = [x_1^L]^{i\alpha} \,\bar{q}_i \not\!\!U_1 l_\alpha + [x_1^R]^{i\alpha} \,\bar{d}_i \not\!\!U_1 e_\alpha + [\bar{x}_1^R]^{i\alpha} \,\bar{u}_i \not\!\!U_1 \nu_\alpha + \text{h.c.}$

SMEFT fit

LQ mediator fit

R_2 Leptoquark (3, 2, 7/6)

Felix Wilsch

High- $p_{\rm T}$ constraints for semileptonic operators in the SMEFT – HEFT 2022

Outlook & Conclusions

- Construction of full flavor likelihood for high- p_T Drell-Yan processes at LHC
 - In the SMEFT (including energy enhanced d = 8 operators)
 - In explicit NP models with heavy BSM mediators
- Automated in Mathematica package **HighPT** (to be released soon)
 - Used to derive bounds on several NP scenarios and single coefficient fits
- Future features:
 - Inclusion for more masses for the BSM mediators
 - Inclusion of further observables: flavor, EW pole, Higgs
 - Inclusion of more experimental searches
 - Additional flavor structures (e.g. $U(2)^3$ quark flavor symmetry)

Leptoquark coupling fits

Fits for a single LQ couplings at a time e.g. U_1 , R_2 , S_1 with $m_{\rm LQ} = 2 \,{\rm TeV}$

(possible models for $R_{D^{(*)}}$ anomalies)

 $\begin{cases} \mathcal{L}_{S_1} = [y_1^L]^{i\alpha} S_1 \bar{q}_i^c \epsilon l_\alpha + [y_1^R]^{i\alpha} S_1 \bar{u}_i^c e_\alpha + [\bar{y}_1^R]^{i\alpha} S_1 \bar{d}_i^c \nu_\alpha + \text{h.c.} \\ \\ \mathcal{L}_{R_2} = -[y_2^L]^{i\alpha} \bar{u}_i R_2 \epsilon l_\alpha + [y_2^R]^{i\alpha} \bar{q}_i e_\alpha R_2 + \text{h.c.} \\ \\ \\ \mathcal{L}_{U_1} = [x_1^L]^{i\alpha} \bar{q}_i \psi_1 l_\alpha + [x_1^R]^{i\alpha} \bar{d}_i \psi_1 e_\alpha + [\bar{x}_1^R]^{i\alpha} \bar{u}_i \psi_1 \nu_\alpha + \text{h.c.} \end{cases}$

Felix Wilsch

High- $p_{\rm T}$ constraints for semileptonic operators in the SMEFT – HEFT 2022

Matching of LQ models to SMEFT

Example:

LQ models for $R_{D^{(*)}}$

- Consider flavor indices: $\alpha\beta ij \in \{3333, 3323\}$
- Relevant experimental searches:
 - $pp \rightarrow \tau \tau$
 - $pp \rightarrow \tau \nu$
- Perform fits for:
 - Wilson coefficients
 - NP couplings

 $\begin{aligned} \mathcal{L}_{S_{1}} &= [y_{1}^{L}]^{i\alpha} \, S_{1} \bar{q}_{i}^{c} \epsilon l_{\alpha} + [y_{1}^{R}]^{i\alpha} \, S_{1} \bar{u}_{i}^{c} e_{\alpha} + [\bar{y}_{1}^{R}]^{i\alpha} \, S_{1} \bar{d}_{i}^{c} \nu_{\alpha} + \text{h.c.} \\ \mathcal{L}_{R_{2}} &= -[y_{2}^{L}]^{i\alpha} \, \bar{u}_{i} R_{2} \epsilon l_{\alpha} + [y_{2}^{R}]^{i\alpha} \, \bar{q}_{i} e_{\alpha} R_{2} + \text{h.c.} \\ \mathcal{L}_{U_{1}} &= [x_{1}^{L}]^{i\alpha} \, \bar{q}_{i} \psi_{1} l_{\alpha} + [x_{1}^{R}]^{i\alpha} \, \bar{d}_{i} \psi_{1} e_{\alpha} + [\bar{x}_{1}^{R}]^{i\alpha} \, \bar{u}_{i} \psi_{1} \nu_{\alpha} + \text{h.c.} \end{aligned}$

SMEFT matching @ tree-level

Field	S_1	R_2	U_1
Quantum Numbers	$({f ar 3},{f 1},1/3)$	$({f 3},{f 2},7/6)$	$({f 3},{f 1},2/3)$
$\left[\mathcal{C}_{ledq} ight]_{lphaeta ij}$	—	—	$2[x_1^L]^{ilpha^*}[x_1^R]^{jeta}$
$\left[\mathcal{C}_{lequ}^{(1)} ight] _{lphaeta ij}$	$rac{1}{2}[y_1^L]^{ilpha^*}[y_1^R]^{jeta}$	$-\tfrac{1}{2}[y_2^R]^{i\beta}[y_2^L]^{j\alpha^*}$	—
$\left[{\cal C}^{(3)}_{lequ} ight]_{lphaeta ij}$	$-\tfrac{1}{8}[y_1^L]^{i\alpha^*}[y_1^R]^{j\beta}$	$-\tfrac{1}{8}[y_2^R]^{i\beta}[y_2^L]^{j\alpha^*}$	_
$[{\cal C}_{eu}]_{lphaeta ij}$	$rac{1}{2}[y_1^R]^{jeta}[y_1^R]^{ilpha^*}$	—	—
$[\mathcal{C}_{ed}]_{lphaeta ij}$	_	_	$-[x_1^R]^{i\beta}[x_1^R]^{j\alpha^*}$
$[\mathcal{C}_{\ell u}]_{lphaeta ij}$	_	$-\tfrac{1}{2}[y_2^L]^{i\beta}[y_2^L]^{j\alpha^*}$	_
$\left[\mathcal{C}_{qe} ight]_{ijlphaeta}$	—	$-\tfrac{1}{2}[y_2^R]^{i\beta}[y_2^R]^{j\alpha^*}$	—
$\left[\mathcal{C}_{lq}^{(1)} ight] _{lphaeta ij}$	$rac{1}{4}[y_1^L]^{ilpha^*}[y_1^L]^{jeta}$	_	$-rac{1}{2}[x_1^L]^{ieta}[x_1^L]^{jlpha^*}$
$\left[{{\cal C}_{lq}^{\left(3 ight)}} ight]_{lpha eta ij}$	$-\tfrac{1}{4}[y_1^L]^{i\alpha^*}[y_1^L]^{j\beta}$	_	$-rac{1}{2}[x_1^L]^{ieta}[x_1^L]^{jlpha^*}$

Universität

S_1 Leptoquark ($\bar{3}, 1, 1/3$)

• S_1 benchmark: $m_{S_1} = 2 \text{ TeV}$ $\mathcal{L}_{S_1} = [y_1^L]^{i\alpha} S_1 \bar{q}_i^c \epsilon l_\alpha + [y_1^R]^{i\alpha} S_1 \bar{u}_i^c e_\alpha + [\bar{y}_1^R]^{i\alpha} S_1 \bar{d}_i^c \nu_\alpha + \text{h.c.}$

χ^2 likelihood vs CL_s

- Universität Zürich^{uz}
- χ^2 likelihood: combine experimental bins with low event count in the tails to validate the Gaussian approximation
 - (1 σ , 2 σ , 3 σ contours) Compare to $CL_s = \frac{p_s}{1 - p_0}$ method (1 σ , 2 σ , 3 σ dashed contours)
- CL_s tends to be more conservative, but overall good agreement with χ^2

Felix Wilsch

EFT validity

- High- p_T tails: events with highest invariant mass are around $\sqrt{\hat{s}} \lesssim 4 \, {\rm TeV}$
- → Validity of EFT approach for relatively light NP mediators (~*few* TeV) ???
 - Option 1: drop highest bins of all searches
 - Option 2: include higher dimensional operators
 - How sizable is the effect of d = 8 operators compared to d = 6?
 - Option 3: simulate with explicit NP mediator rather than EFT
 - How does the explicit model compare to d = 6, 8 EFT operators?
- Analyse these effects with **HighPT** for some specific models [w.i.p.]

see e.g.:

Dawson, Fontes, Homiller, Sullivan [2205.01561] \rightarrow see Duarte's talk Boughezal, Mereghetti, Petriello [2106.05337] Alioli, Boughezal, Mereghetti, Petriello [2003.11615] Kim, Martin [2203.11976]

Effects of d = 8 operators

Felix Wilsch

High- $p_{\rm T}$ constraints for semileptonic operators in the SMEFT – HEFT 2022

0.04

d = 8 effects for the U_1 leptoquark

High- $p_{\rm T}$ constraints for semileptonic operators in the SMEFT – HEFT 2022

Code examples

HighPT main routines:

- Plotting/computing cross-sections
- Computing event yields
- Constructing χ^2 likelihoods

	Event yields				
-	Compute expected numb ATLAS di-tau search	er of event in all bins of the			
_	Keeping terms up to $\mathcal{O}(\Lambda^{-4})$ in the cross- section and considering EFT operators up to $d = 8$	<pre>EventYield["di-tau-ATLAS", OperatorDimension -> 8, EFTorder -> 4, Scale -> 1000]</pre>			

Extracting likelihoods

ChiSquareLHC["di-tau-ATLAS",

OperatorDimension -> 8,

EFTorder -> 4

];

Computing observable for di-tau-ATLAS search: arXiv:2002.12223

PROCESS EXPERIMENT	:	$pp \rightarrow \tau^- \tau^+$ ATLAS
ARXIV	:	2002.12223
SOURCE	:	hepdata
OBSERVABLE	:	mtot
BINNING m_T^{tot} [GeV]	:	$\{150, 200, 250, 300, 350, 400, 450, 500, 600, 700, 800, 900, 1000, 1150, 1500$
EVENTS OBSERVED	:	$\{1167., 1568., 1409., 1455., 1292., 650., 377., 288., 92., 57., 27., 14\}$
LUMINOSITY [fb ⁻¹]	:	139
BINNING $\sqrt{\hat{s}}$ [GeV]	:	$\{150, 200, 250, 300, 350, 400, 450, 500, 600, 700, 800, 900, 1000, 1150, 1500$
BINNING p _T [GeV]	:	{ 0 , ∞}

Felix Wilsch

High- $p_{\rm T}$ constraints for semileptonic operators in the SMEFT – HEFT 2022

Regular form-factors $F_{I, \text{Reg}}(\hat{s}, \hat{t})$

- **Regular form-factors:** analytic functions of \hat{s} , \hat{t}
- Describe unresolved d.o.f. \rightarrow EFT
- Formal expansion in validity range of the EFT $|\hat{s}|, |\hat{t}| < \Lambda^2$:

- Derivative expansion:
$$F_{I,Reg}(\hat{s},\hat{t}) = \sum_{n,m=0}^{\infty} F_{I,(n,m)} \left(\frac{\hat{s}}{v^2}\right)^n \left(\frac{\hat{t}}{v^2}\right)^m$$

- EFT expansion: $F_{I,(n,m)} = \sum_{k=n+m+1} \mathcal{O}\left((v^2/\Lambda^2)^k\right)$

- Terms to consider at mass dimension \boldsymbol{d}

-
$$d = 6$$
: $(n, m) = (0, 0)$

-
$$d = 8$$
: $(n, m) = (0, 0), (1, 0), (0, 1)$

Singular form-factors $F_{I, \text{Poles}}(\hat{s}, \hat{t})$

• **Pole form-factors:** non-analytic functions with finite number of simple poles

$$F_{I,\text{Poles}}(\hat{s},\hat{t}) = \sum_{a} \frac{v^2 \mathscr{S}_{I(a)}}{\hat{s} - \Omega_a} + \sum_{b} \frac{v^2 \mathscr{T}_{I(b)}}{\hat{t} - \Omega_b} - \sum_{c} \frac{v^2 \mathscr{U}_{I(c)}}{\hat{s} + \hat{t} + \Omega_c}$$

- ► *a* : sum over all *s*-channel (colorless) mediators
- ► *b* : sum over all *t*-channel (colorful) mediators
- c : sum over all u-channel (colorful) mediators
- SM contribution $\rightarrow \mathcal{S}_{V(a)} \ (a \in \{\gamma, Z, W\})$
- NP contribution $\rightarrow S_{I(a)}, \mathcal{T}_{I(b)}, \mathcal{U}_{I(c)}$
- Residues can be made independent of \hat{s} , \hat{t} by partial fraction decomposition:

Universität

 $\hat{u} = -\hat{s} - \hat{t}$

 $\Omega_n = m_n^2 - i m_n \Gamma_n$

SMEFT operators up to d = 8

- Warsaw basis d = 6 Grzadkowski, Iskrzynski, Misiak, Rosiek [1008.4884]
- Operator classes contributing to Drell-Yan: ψ^4 , $\psi^2 H^2 D$, $\psi^2 X H$

d=6	ψ^4	$pp o \ell \ell$	$pp o \ell u$
$\mathcal{O}_{lq}^{(1)}$	$(ar{l}_lpha\gamma^\mu l_eta)(ar{q}_i\gamma_\mu q_j)$	\checkmark	_
$\mathcal{O}_{lq}^{(3)}$	$(ar{l}_lpha \gamma^\mu au^I l_eta) (ar{q}_i \gamma_\mu au^I q_j)$	\checkmark	\checkmark
\mathcal{O}_{lu}	$(ar{l}_lpha \gamma^\mu l_eta) (ar{u}_i \gamma_\mu u_j)$	\checkmark	_
\mathcal{O}_{ld}	$(ar{l}_lpha \gamma^\mu l_eta) (ar{d}_i \gamma_\mu d_j)$	\checkmark	—
$\overline{\mathcal{O}_{eq}}$	$(ar{e}_lpha\gamma^\mu e_eta)(ar{q}_i\gamma_\mu q_j)$	\checkmark	_
\mathcal{O}_{eu}	$(ar{e}_lpha\gamma^\mu e_eta)(ar{u}_i\gamma_\mu u_j)$	\checkmark	_
\mathcal{O}_{ed}	$(ar{e}_lpha\gamma^\mu e_eta)(ar{d}_i\gamma_\mu d_j)$	\checkmark	_
$\mathcal{O}_{ledq} + \text{h.c.}$	$(ar{l}_lpha e_eta)(ar{d}_i q_j)$	\checkmark	\checkmark
$\mathcal{O}_{lequ}^{(1)}+ ext{h.c.}$	$(ar{l}_lpha e_eta)arepsilon(ar{q}_i u_j)$	\checkmark	\checkmark
$\mathcal{O}_{lequ}^{(3)} + \mathrm{h.c.}$	$(ar{l}_lpha \sigma^{\mu u} e_eta) arepsilon (ar{q}_i \sigma_{\mu u} u_j)$	\checkmark	\checkmark

4-fermion

dipoles

d = 6	$\psi^2 XH + ext{h.c.}$	$pp ightarrow \ell\ell$	$pp o \ell u$
\mathcal{O}_{eW}	$(ar{l}_lpha \sigma^{\mu u} e_eta) au^I H W^I_{\mu u}$	\checkmark	\checkmark
\mathcal{O}_{eB}	$(ar{l}_lpha \sigma^{\mu u} e_eta) HB_{\mu u}$	\checkmark	_
\mathcal{O}_{uW}	$\left(ar{q}_i \sigma^{\mu u} u_j ight) au^I \widetilde{H} W^I_{\mu u}$	\checkmark	\checkmark
\mathcal{O}_{uB}	$\left(ar{q}_i\sigma^{\mu u}u_j ight)\widetilde{H}B_{\mu u}$	\checkmark	_
\mathcal{O}_{dW}	$\left(ar{q}_i \sigma^{\mu u} d_j ight) au^I H W^I_{\mu u}$	\checkmark	\checkmark
\mathcal{O}_{dB}	$(ar{q}_i \sigma^{\mu u} d_j) H B_{\mu u}$	\checkmark	_

Z/W coupling modifications

d=6	$\psi^2 H^2 D$	$pp ightarrow \ell \ell$	$pp ightarrow \ell u$
$\mathcal{O}_{Hl}^{(1)}$	$(\bar{l}_{\alpha}\gamma^{\mu}l_{\beta})(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)$	\checkmark	_
$\mathcal{O}_{Hl}^{(3)}$	$(\bar{l}_{lpha}\gamma^{\mu} au^{I}l_{eta})(H^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}H)$	\checkmark	\checkmark
$\mathcal{O}_{Hq}^{(1)}$	$(ar{q}_i\gamma^\mu q_j)(H^\dagger i\overleftrightarrow{D}_\mu H)$	\checkmark	—
$\mathcal{O}_{Hq}^{(3)}$	$(ar{q}_i\gamma^\mu au^Iq_j)(H^\dagger i\overleftrightarrow{D}^I_\mu H)$	\checkmark	\checkmark
\mathcal{O}_{He}	$(\bar{e}_{lpha}\gamma^{\mu}e_{eta})(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)$	\checkmark	_
\mathcal{O}_{Hu}	$(ar{u}_i\gamma^\mu u_j)(H^\dagger i \overleftrightarrow{D}_\mu H)$	\checkmark	_
\mathcal{O}_{Hd}	$(\bar{d}_i \gamma^\mu d_j) (H^\dagger i \overleftrightarrow{D}_\mu H)$	\checkmark	_
\mathcal{O}_{Hud} + h.c.	$(\bar{u}_i \gamma^\mu d_j) (\widetilde{H}^\dagger i D_ u H)$	_	✓

SMEFT operators d = 8

- Extension of Warsaw basis by C. Murphy Murphy [2005.00059]
 - see also: Li, Ren, Shu, Xiao, Yu, Zheng [2005.00008]
- Operator classes contributing to Drell-Yan: $\psi^4 D^2$, $\psi^4 H^2$, $\psi^2 H^2 D^3$, $\psi^2 H^4 D$

d=8	$\psi^4 D^2$	$pp ightarrow \ell\ell$	$pp o \ell u$
$\mathcal{O}_{l^2q^2D^2}^{(1)}$	$D^ u(ar l_lpha\gamma^\mu l_eta)D_ u(ar q_i\gamma_\mu q_j)$	\checkmark	_
$\mathcal{O}_{l^2q^2D^2}^{(2)}$	$(ar{l}_lpha\gamma^\mu\overleftrightarrow{D}^ u l_eta)(ar{q}_i\gamma_\mu\overleftrightarrow{D}_ u q_j)$	\checkmark	-
$\mathcal{O}_{l^{2}q^{2}D^{2}}^{(3)}$	$D^{ u}(ar{l}_lpha\gamma^\mu au^I l_eta)D_ u(ar{q}_i\gamma_\mu au^I q_j)$	\checkmark	\checkmark
$\mathcal{O}_{l^2q^2D^2}^{(4)}$	$(ar{l}_{lpha}\gamma^{\mu}\overleftrightarrow{D}^{I u}l_{eta})(ar{q}_{i}\gamma_{\mu}\overleftrightarrow{D}^{I}_{ u}q_{j})$	\checkmark	\checkmark
$\mathcal{O}_{l^2 u^2 D^2}^{(1)}$	$D^{ u}(ar{l}_{lpha}\gamma^{\mu}l_{eta})D_{ u}(ar{u}_{i}\gamma_{\mu}u_{j})$	\checkmark	_
$\mathcal{O}_{l^{2}_{c} u^{2} D^{2}}^{(2)}$	$(ar{l}_{lpha}\gamma^{\mu}\overleftrightarrow{D}^{ u}l_{eta})(ar{u}_{i}\gamma_{\mu}\overleftrightarrow{D}_{ u}u_{j})$	\checkmark	_
$\mathcal{O}_{l^2d^2D^2}^{(1)}$	$D^{ u}(ar{l}_{lpha}\underline{\gamma}^{\mu}l_{eta})D_{ u}(ar{d}_{i}\gamma_{\mu}d_{j})$	\checkmark	_
$\mathcal{O}_{l^2 d^2 D^2}^{(2)}$	$(ar{l}_{lpha}\gamma^{\mu}\overleftarrow{D}^{ u}l_{eta})(ar{d}_{i}\gamma_{\mu}\overleftarrow{D}_{ u}d_{j})$	\checkmark	_
$\mathcal{O}_{q^2e^2D^2}^{(1)}$	$D^ u(ar q_i\gamma^\mu q_j)D_ u(ar e_lpha\gamma_\mu e_eta)$	\checkmark	—
$\mathcal{O}^{(2)}_{q^2e^2D^2}$	$(ar{q}_i\gamma^\mu\overleftrightarrow{D}^ u q_j)(ar{e}_lpha\gamma_\mu\overleftrightarrow{D}_ u e_eta)$	\checkmark	_
$\mathcal{O}_{e_{z}^{2}u^{2}D^{2}}^{(1)}$	$D^ u(ar e_lpha \gamma^\mu e_eta) D_ u(ar u_i \gamma_\mu u_j)$	\checkmark	_
$\mathcal{O}^{(2)}_{e^2_{+} u^2 D^2}$	$(ar{e}_lpha\gamma^\mu \overleftarrow{D}^ u e_eta)(ar{u}_i\gamma_\mu \overleftarrow{D}_ u u_j)$	\checkmark	_
$\mathcal{O}_{e_{2}^{2}d^{2}D^{2}}^{(1)}$	$D^{ u}(ar{e}_{lpha}\gamma^{\mu}e_{eta})D_{ u}(ar{d}_{i}\gamma_{\mu}d_{j})$	\checkmark	_
(2)			
$= \mathcal{O}_{e^2 d^2 D^2}^{(2)}$	$(ar{e}_lpha \gamma^\muD^{ u}e_eta)(d_i\gamma_\muD_{ u}d_j)$	✓	_
$\mathcal{O}_{e^2d^2D^2}^{(2)}$	$\frac{(\bar{e}_{\alpha}\gamma^{\mu} D^{\nu}e_{\beta})(d_{i}\gamma_{\mu} D_{\nu}d_{j})}{(d_{i}\gamma_{\mu} D_{\nu}d_{j})}$	<u> </u>	_
$\frac{\mathcal{O}_{e^2d^2D^2}^{(2)}}{d=8}$	$(ar{e}_lpha \gamma^\mu D^{ u} e_eta) (d_i \gamma_\mu D_{ u} d_j) onumber \ \psi^4 H^2$	$\sqrt{pp ightarrow \ell\ell}$	$pp ightarrow \ell u$
$\frac{\mathcal{O}_{e^2d^2D^2}^{(2)}}{d=8}$ $\frac{d=8}{\mathcal{O}_{l^2q^2H^2}^{(1)}}$	$\frac{(\bar{e}_{\alpha}\gamma^{\mu} D^{\nu}e_{\beta})(d_{i}\gamma_{\mu} D_{\nu}d_{j})}{\psi^{4}H^{2}}$ $\frac{(\bar{l}_{\alpha}\gamma^{\mu}l_{\beta})(\bar{q}_{i}\gamma_{\mu}q_{j})(H^{\dagger}H)}{(\bar{l}_{\alpha}\gamma^{\mu}l_{\beta})(\bar{q}_{i}\gamma_{\mu}q_{j})(H^{\dagger}H)}$	$\frac{\checkmark}{pp \rightarrow \ell \ell}$	$pp ightarrow \ell u$
$\frac{\mathcal{O}_{e^2d^2D^2}^{(2)}}{d=8} \\ \frac{d=8}{\mathcal{O}_{l^2q^2H^2}^{(1)}} \\ \mathcal{O}_{l^2q^2H^2}^{(2)}}$	$\frac{(\bar{e}_{\alpha}\gamma^{\mu} D^{\nu} e_{\beta})(d_{i}\gamma_{\mu} D_{\nu}d_{j})}{\psi^{4}H^{2}}$ $\frac{(\bar{l}_{\alpha}\gamma^{\mu} l_{\beta})(\bar{q}_{i}\gamma_{\mu}q_{j})(H^{\dagger}H)}{(\bar{l}_{\alpha}\gamma^{\mu}\tau^{I} l_{\beta})(\bar{q}_{i}\gamma_{\mu}q_{j})(H^{\dagger}\tau^{I}H)}$	$ \begin{array}{c} \checkmark \\ pp \rightarrow \ell\ell \\ \checkmark \\ \checkmark \\ \checkmark \end{array} $	$pp \rightarrow \ell \nu$
$\begin{array}{c} \mathcal{O}_{e^2d^2D^2}^{(2)} \\ \hline d = 8 \\ \hline \mathcal{O}_{l^2q^2H^2}^{(1)} \\ \mathcal{O}_{l^2q^2H^2}^{(2)} \\ \mathcal{O}_{l^2q^2H^2}^{(3)} \\ \mathcal{O}_{l^2q^2H^2}^{(3)} \end{array}$	$\frac{(\bar{e}_{\alpha}\gamma^{\mu} D^{\nu}e_{\beta})(d_{i}\gamma_{\mu} D_{\nu}d_{j})}{\psi^{4}H^{2}}$ $\frac{(\bar{l}_{\alpha}\gamma^{\mu}l_{\beta})(\bar{q}_{i}\gamma_{\mu}q_{j})(H^{\dagger}H)}{(\bar{l}_{\alpha}\gamma^{\mu}\tau^{I}l_{\beta})(\bar{q}_{i}\gamma_{\mu}q_{j})(H^{\dagger}\tau^{I}H)}$ $(\bar{l}_{\alpha}\gamma^{\mu}\tau^{I}l_{\beta})(\bar{q}_{i}\gamma_{\mu}\tau^{I}q_{j})(H^{\dagger}H)$	$ \begin{array}{c} \checkmark \\ pp \rightarrow \ell\ell \\ \checkmark \\ \checkmark \\ \checkmark \\ \checkmark \\ \checkmark \end{array} $	$pp \rightarrow \ell \nu$ $-$ $-$ \checkmark
$\begin{array}{c} \mathcal{O}_{e^2d^2D^2}^{(2)} \\ \hline \boldsymbol{d} = \boldsymbol{8} \\ \hline \mathcal{O}_{l^2q^2H^2}^{(1)} \\ \mathcal{O}_{l^2q^2H^2}^{(2)} \\ \mathcal{O}_{l^2q^2H^2}^{(3)} \\ \mathcal{O}_{l^2q^2H^2}^{(4)} \\ \mathcal{O}_{l^2q^2H^2}^{(4)} \end{array}$	$\frac{(\bar{e}_{\alpha}\gamma^{\mu} D^{\nu}e_{\beta})(d_{i}\gamma_{\mu} D_{\nu}d_{j})}{\psi^{4}H^{2}}$ $\frac{\psi^{4}H^{2}}{(\bar{l}_{\alpha}\gamma^{\mu}l_{\beta})(\bar{q}_{i}\gamma_{\mu}q_{j})(H^{\dagger}H)}$ $(\bar{l}_{\alpha}\gamma^{\mu}\tau^{I}l_{\beta})(\bar{q}_{i}\gamma_{\mu}\tau^{I}q_{j})(H^{\dagger}\tau^{I}H)}$ $(\bar{l}_{\alpha}\gamma^{\mu}l_{\beta})(\bar{q}_{i}\gamma_{\mu}\tau^{I}q_{j})(H^{\dagger}\tau^{I}H)}$	$ \begin{array}{c} \checkmark \\ pp \rightarrow \ell\ell \\ \checkmark \end{array} $	$\begin{array}{c} - \\ pp \rightarrow \ell \nu \\ - \\ \checkmark \\ - \\ \checkmark \\ - \end{array}$
$ \begin{array}{c} \mathcal{O}_{e^2d^2D^2}^{(2)} \\ \hline d = 8 \\ \hline \mathcal{O}_{l^2q^2H^2}^{(1)} \\ \mathcal{O}_{l^2q^2H^2}^{(2)} \\ \mathcal{O}_{l^2q^2H^2}^{(3)} \\ \mathcal{O}_{l^2q^2H^2}^{(4)} \\ \mathcal{O}_{l^2q^2H^2}^{(4)} \\ \mathcal{O}_{l^2q^2H^2}^{(5)} \\ \mathcal{O}_{l^2q^2H^2}^{(5)} \end{array} $	$(\bar{e}_{\alpha}\gamma^{\mu} D^{\nu} e_{\beta})(d_{i}\gamma_{\mu} D_{\nu}d_{j})$ $\psi^{4}H^{2}$ $(\bar{l}_{\alpha}\gamma^{\mu}l_{\beta})(\bar{q}_{i}\gamma_{\mu}q_{j})(H^{\dagger}H)$ $(\bar{l}_{\alpha}\gamma^{\mu}\tau^{I}l_{\beta})(\bar{q}_{i}\gamma_{\mu}q_{j})(H^{\dagger}\tau^{I}H)$ $(\bar{l}_{\alpha}\gamma^{\mu}\tau^{I}l_{\beta})(\bar{q}_{i}\gamma_{\mu}\tau^{I}q_{j})(H^{\dagger}\tau^{I}H)$ $(\bar{l}_{\alpha}\gamma^{\mu}l_{\beta})(\bar{q}_{i}\gamma_{\mu}\tau^{I}q_{j})(H^{\dagger}\tau^{I}H)$ $\epsilon^{IJK}(\bar{l}_{\alpha}\gamma^{\mu}\tau^{I}l_{\beta})(\bar{q}_{i}\gamma_{\mu}\tau^{J}q_{j})(H^{\dagger}\tau^{K}H)$	$ \begin{array}{c} \checkmark \\ pp \rightarrow \ell\ell \\ \checkmark \\ \checkmark \\ \checkmark \\ \checkmark \\ \checkmark \\ - \end{array} $	$\begin{array}{c} -\\ pp \rightarrow \ell \nu \\ -\\ \checkmark \\ -\\ \checkmark \\ -\\ \checkmark \end{array}$
$\begin{array}{c} \mathcal{O}_{e^2d^2D^2}^{(2)} \\ \hline \boldsymbol{d} = \boldsymbol{8} \\ \hline \mathcal{O}_{l^2q^2H^2}^{(1)} \\ \mathcal{O}_{l^2q^2H^2}^{(2)} \\ \mathcal{O}_{l^2q^2H^2}^{(3)} \\ \mathcal{O}_{l^2q^2H^2}^{(4)} \\ \mathcal{O}_{l^2q^2H^2}^{(5)} \\ \mathcal{O}_{l^2q^2H^2}^{(5)} \\ \hline \mathcal{O}_{l^2w^2H^2}^{(1)} \end{array}$	$(\bar{e}_{\alpha}\gamma^{\mu} D^{\nu} e_{\beta})(d_{i}\gamma_{\mu} D_{\nu}d_{j})$ $\psi^{4}H^{2}$ $(\bar{l}_{\alpha}\gamma^{\mu}l_{\beta})(\bar{q}_{i}\gamma_{\mu}q_{j})(H^{\dagger}H)$ $(\bar{l}_{\alpha}\gamma^{\mu}\tau^{I}l_{\beta})(\bar{q}_{i}\gamma_{\mu}\tau^{I}q_{j})(H^{\dagger}\tau^{I}H)$ $(\bar{l}_{\alpha}\gamma^{\mu}\tau^{I}l_{\beta})(\bar{q}_{i}\gamma_{\mu}\tau^{I}q_{j})(H^{\dagger}\tau^{I}H)$ $(\bar{l}_{\alpha}\gamma^{\mu}\ell_{\beta})(\bar{q}_{i}\gamma_{\mu}\tau^{J}q_{j})(H^{\dagger}\tau^{K}H)$ $(\bar{l}_{\alpha}\gamma^{\mu}l_{\beta})(\bar{q}_{i}\gamma_{\mu}u_{j})(H^{\dagger}H)$	$ \begin{array}{c} \checkmark \\ pp \rightarrow \ell\ell \\ \checkmark \\ \checkmark \\ \checkmark \\ \checkmark \\ - \\ \checkmark \\ \checkmark$	$\begin{array}{c} -\\ pp \rightarrow \ell \nu \\ \hline -\\ \checkmark \\ -\\ \checkmark \\ \hline -\\ \checkmark \\ \hline -\\ \checkmark \\ \hline -\\ \hline \end{array}$
$\begin{array}{c} \mathcal{O}_{e^2d^2D^2}^{(2)} \\ \hline \boldsymbol{d} = \boldsymbol{8} \\ \hline \mathcal{O}_{l^2q^2H^2}^{(1)} \\ \mathcal{O}_{l^2q^2H^2}^{(2)} \\ \mathcal{O}_{l^2q^2H^2}^{(3)} \\ \mathcal{O}_{l^2q^2H^2}^{(4)} \\ \mathcal{O}_{l^2q^2H^2}^{(5)} \\ \mathcal{O}_{l^2q^2H^2}^{(5)} \\ \mathcal{O}_{l^2w^2H^2}^{(1)} \\ \mathcal{O}_{l^2w^2H^2}^{(2)} \\ \mathcal{O}_{l^2w^2H^2}^{(2)} \end{array}$	$(\bar{e}_{\alpha}\gamma^{\mu}D^{\nu}e_{\beta})(d_{i}\gamma_{\mu}D_{\nu}d_{j})$ $\psi^{4}H^{2}$ $(\bar{l}_{\alpha}\gamma^{\mu}l_{\beta})(\bar{q}_{i}\gamma_{\mu}q_{j})(H^{\dagger}H)$ $(\bar{l}_{\alpha}\gamma^{\mu}\tau^{I}l_{\beta})(\bar{q}_{i}\gamma_{\mu}\tau^{I}q_{j})(H^{\dagger}\tau^{I}H)$ $(\bar{l}_{\alpha}\gamma^{\mu}l_{\beta})(\bar{q}_{i}\gamma_{\mu}\tau^{I}q_{j})(H^{\dagger}\tau^{I}H)$ $\epsilon^{IJK}(\bar{l}_{\alpha}\gamma^{\mu}\tau^{I}l_{\beta})(\bar{q}_{i}\gamma_{\mu}\tau^{J}q_{j})(H^{\dagger}\tau^{K}H)$ $(\bar{l}_{\alpha}\gamma^{\mu}l_{\beta})(\bar{u}_{i}\gamma_{\mu}u_{j})(H^{\dagger}H)$ $(\bar{l}_{\alpha}\gamma^{\mu}\tau^{I}l_{\beta})(\bar{u}_{i}\gamma_{\mu}u_{j})(H^{\dagger}H)$	$ \begin{array}{c} \checkmark \\ pp \rightarrow \ell\ell \\ \checkmark \\ \checkmark \\ \checkmark \\ \checkmark \\ \hline \\ \checkmark \\ \downarrow \\ \checkmark \\ \checkmark$	$\begin{array}{c} - \\ pp \rightarrow \ell \nu \\ \hline - \\ \checkmark \\ - \\ \checkmark \\ \hline - \\ \checkmark \\ \hline - \\ \hline \\ - \\ \hline \\ - \\ \hline \\ - \\ \hline \\ - \\ -$
$\begin{array}{c} \mathcal{O}_{e^2d^2D^2}^{(2)} \\ \hline d = 8 \\ \hline \mathcal{O}_{l^2q^2H^2}^{(2)} \\ \mathcal{O}_{l^2q^2H^2}^{(2)} \\ \mathcal{O}_{l^2q^2H^2}^{(3)} \\ \mathcal{O}_{l^2q^2H^2}^{(4)} \\ \mathcal{O}_{l^2q^2H^2}^{(5)} \\ \hline \mathcal{O}_{l^2q^2H^2}^{(5)} \\ \mathcal{O}_{l^2u^2H^2}^{(2)} \\ \mathcal{O}_{l^2u^2H^2}^{(2)} \\ \mathcal{O}_{l^2d^2H^2}^{(2)} \\ \mathcal{O}_{l^2q^2H^2}^{(2)} \\ \mathcal{O}_{l^2d^2H^2}^{(2)} \\ \mathcal{O}_{l^2d^2H^2}^{(2)} \\ \mathcal{O}_{l^2d^2H^2}^{(2)} \\ \mathcal{O}_{l^2d^2H^2}^{(2)} \end{array}$	$(\bar{e}_{\alpha}\gamma^{\mu}D^{\nu}e_{\beta})(d_{i}\gamma_{\mu}D_{\nu}d_{j})$ $\psi^{4}H^{2}$ $(\bar{l}_{\alpha}\gamma^{\mu}l_{\beta})(\bar{q}_{i}\gamma_{\mu}q_{j})(H^{\dagger}H)$ $(\bar{l}_{\alpha}\gamma^{\mu}\tau^{I}l_{\beta})(\bar{q}_{i}\gamma_{\mu}q_{j})(H^{\dagger}\tau^{I}H)$ $(\bar{l}_{\alpha}\gamma^{\mu}l_{\beta})(\bar{q}_{i}\gamma_{\mu}\tau^{I}q_{j})(H^{\dagger}\tau^{I}H)$ $\epsilon^{IJK}(\bar{l}_{\alpha}\gamma^{\mu}\tau^{I}l_{\beta})(\bar{q}_{i}\gamma_{\mu}\tau^{J}q_{j})(H^{\dagger}\tau^{K}H)$ $(\bar{l}_{\alpha}\gamma^{\mu}l_{\beta})(\bar{u}_{i}\gamma_{\mu}u_{j})(H^{\dagger}\tau^{I}H)$ $(\bar{l}_{\alpha}\gamma^{\mu}l_{\beta})(\bar{u}_{i}\gamma_{\mu}u_{j})(H^{\dagger}\tau^{I}H)$ $(\bar{l}_{\alpha}\gamma^{\mu}l_{\beta})(\bar{d}_{i}\gamma_{\mu}d_{j})(H^{\dagger}H)$	$ \begin{array}{c} \checkmark \\ pp \rightarrow \ell\ell \\ \checkmark \\ \checkmark$	$\begin{array}{c} - \\ \hline pp \rightarrow \ell \nu \\ \hline - \\ \checkmark \\ - \\ \checkmark \\ \hline - \\ \checkmark \\ \hline - \\ \checkmark \\ \hline - \\ \hline \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\$
$\begin{array}{c} \mathcal{O}_{e^2d^2D^2}^{(2)} \\ \hline d = 8 \\ \hline \mathcal{O}_{l^2q^2H^2}^{(1)} \\ \mathcal{O}_{l^2q^2H^2}^{(2)} \\ \mathcal{O}_{l^2q^2H^2}^{(3)} \\ \mathcal{O}_{l^2q^2H^2}^{(4)} \\ \mathcal{O}_{l^2q^2H^2}^{(5)} \\ \mathcal{O}_{l^2u^2H^2}^{(5)} \\ \mathcal{O}_{l^2u^2H^2}^{(2)} \\ \mathcal{O}_{l^2d^2H^2}^{(2)} \\ $	$(\bar{e}_{\alpha}\gamma^{\mu}D^{\nu}e_{\beta})(d_{i}\gamma_{\mu}D_{\nu}d_{j})$ $\psi^{4}H^{2}$ $(\bar{l}_{\alpha}\gamma^{\mu}l_{\beta})(\bar{q}_{i}\gamma_{\mu}q_{j})(H^{\dagger}H)$ $(\bar{l}_{\alpha}\gamma^{\mu}\tau^{I}l_{\beta})(\bar{q}_{i}\gamma_{\mu}q_{j})(H^{\dagger}\tau^{I}H)$ $(\bar{l}_{\alpha}\gamma^{\mu}\tau^{I}l_{\beta})(\bar{q}_{i}\gamma_{\mu}\tau^{I}q_{j})(H^{\dagger}\tau^{I}H)$ $(\bar{l}_{\alpha}\gamma^{\mu}l_{\beta})(\bar{q}_{i}\gamma_{\mu}\tau^{J}q_{j})(H^{\dagger}\tau^{I}H)$ $(\bar{l}_{\alpha}\gamma^{\mu}l_{\beta})(\bar{q}_{i}\gamma_{\mu}u_{j})(H^{\dagger}\tau^{I}H)$ $(\bar{l}_{\alpha}\gamma^{\mu}l_{\beta})(\bar{u}_{i}\gamma_{\mu}u_{j})(H^{\dagger}\tau^{I}H)$ $(\bar{l}_{\alpha}\gamma^{\mu}l_{\beta})(\bar{d}_{i}\gamma_{\mu}d_{j})(H^{\dagger}\pi^{I}H)$ $(\bar{l}_{\alpha}\gamma^{\mu}\tau^{I}l_{\beta})(\bar{d}_{i}\gamma_{\mu}d_{j})(H^{\dagger}\tau^{I}H)$ $(\bar{l}_{\alpha}\gamma^{\mu}\tau^{I}l_{\beta})(\bar{d}_{i}\gamma_{\mu}d_{j})(H^{\dagger}\tau^{I}H)$	$ \begin{array}{c} \checkmark \\ pp \rightarrow \ell\ell \\ \checkmark \\ \checkmark$	$\begin{array}{c} -\\ pp \rightarrow \ell \nu \\ \hline \\ -\\ \checkmark \\ -\\ \checkmark \\ -\\ \checkmark \\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -$
$\begin{array}{c} \mathcal{O}_{e^2d^2D^2}^{(2)} \\ \hline d = 8 \\ \hline \mathcal{O}_{l^2q^2H^2}^{(1)} \\ \mathcal{O}_{l^2q^2H^2}^{(2)} \\ \mathcal{O}_{l^2q^2H^2}^{(3)} \\ \mathcal{O}_{l^2q^2H^2}^{(4)} \\ \mathcal{O}_{l^2q^2H^2}^{(5)} \\ \mathcal{O}_{l^2u^2H^2}^{(5)} \\ \mathcal{O}_{l^2u^2H^2}^{(2)} \\ \mathcal{O}_{l^2d^2H^2}^{(2)} \\ $	$(\bar{e}_{\alpha}\gamma^{\mu}D^{\nu}e_{\beta})(d_{i}\gamma_{\mu}D_{\nu}d_{j})$ $\psi^{4}H^{2}$ $(\bar{l}_{\alpha}\gamma^{\mu}l_{\beta})(\bar{q}_{i}\gamma_{\mu}q_{j})(H^{\dagger}H)$ $(\bar{l}_{\alpha}\gamma^{\mu}\tau^{I}l_{\beta})(\bar{q}_{i}\gamma_{\mu}q_{j})(H^{\dagger}\tau^{I}H)$ $(\bar{l}_{\alpha}\gamma^{\mu}\tau^{I}l_{\beta})(\bar{q}_{i}\gamma_{\mu}\tau^{I}q_{j})(H^{\dagger}\tau^{I}H)$ $(\bar{l}_{\alpha}\gamma^{\mu}l_{\beta})(\bar{q}_{i}\gamma_{\mu}\tau^{J}q_{j})(H^{\dagger}\tau^{I}H)$ $(\bar{l}_{\alpha}\gamma^{\mu}\ell_{\beta})(\bar{q}_{i}\gamma_{\mu}u_{j})(H^{\dagger}\tau^{I}H)$ $(\bar{l}_{\alpha}\gamma^{\mu}\ell_{\beta})(\bar{u}_{i}\gamma_{\mu}u_{j})(H^{\dagger}\tau^{I}H)$ $(\bar{l}_{\alpha}\gamma^{\mu}\ell_{\beta})(\bar{d}_{i}\gamma_{\mu}d_{j})(H^{\dagger}\tau^{I}H)$ $(\bar{l}_{\alpha}\gamma^{\mu}\tau^{I}l_{\beta})(\bar{d}_{i}\gamma_{\mu}d_{j})(H^{\dagger}\tau^{I}H)$ $(\bar{l}_{\alpha}\gamma^{\mu}\eta_{j})(\bar{e}_{\alpha}\gamma_{\mu}e_{\beta})(H^{\dagger}H)$	$ \frac{\checkmark}{pp \rightarrow \ell \ell} $ $ \frac{\checkmark}{\checkmark} $	$\begin{array}{c} - \\ \hline pp \rightarrow \ell \nu \\ \hline - \\ \checkmark \\ \hline - \\ \checkmark \\ \hline - \\ \checkmark \\ \hline - \\ \hline \\ - \\ \hline \\ - \\ - \\ \hline \\ - \\ - \\$
$\begin{array}{c} \mathcal{O}_{e^2d^2D^2}^{(2)} \\ \hline d = 8 \\ \hline \mathcal{O}_{l^2q^2H^2}^{(2)} \\ \mathcal{O}_{l^2q^2H^2}^{(2)} \\ \mathcal{O}_{l^2q^2H^2}^{(3)} \\ \mathcal{O}_{l^2q^2H^2}^{(4)} \\ \mathcal{O}_{l^2q^2H^2}^{(5)} \\ \mathcal{O}_{l^2q^2H^2}^{(5)} \\ \mathcal{O}_{l^2u^2H^2}^{(2)} \\ \mathcal{O}_{l^2d^2H^2}^{(2)} \\ \mathcal{O}_{l^2d^2H^2}^{(2)} \\ \mathcal{O}_{l^2d^2H^2}^{(2)} \\ \mathcal{O}_{l^2d^2H^2}^{(2)} \\ \mathcal{O}_{l^2d^2H^2}^{(2)} \\ \mathcal{O}_{l^2d^2H^2}^{(2)} \\ \mathcal{O}_{q^2e^2H^2}^{(2)} \\ \mathcal{O}_{q^2e^2H^2}^{(2)} \\ \mathcal{O}_{q^2e^2H^2}^{(2)} \\ \mathcal{O}_{q^2e^2H^2}^{(2)} \end{array}$	$(\bar{e}_{\alpha}\gamma^{\mu}D^{\nu}e_{\beta})(d_{i}\gamma_{\mu}D_{\nu}d_{j})$ $\frac{\psi^{4}H^{2}}{(\bar{l}_{\alpha}\gamma^{\mu}l_{\beta})(\bar{q}_{i}\gamma_{\mu}q_{j})(H^{\dagger}H)}$ $(\bar{l}_{\alpha}\gamma^{\mu}\tau^{I}l_{\beta})(\bar{q}_{i}\gamma_{\mu}q_{j})(H^{\dagger}\tau^{I}H)$ $(\bar{l}_{\alpha}\gamma^{\mu}\tau^{I}l_{\beta})(\bar{q}_{i}\gamma_{\mu}\tau^{I}q_{j})(H^{\dagger}\tau^{I}H)$ $(\bar{l}_{\alpha}\gamma^{\mu}l_{\beta})(\bar{q}_{i}\gamma_{\mu}\tau^{J}q_{j})(H^{\dagger}\tau^{I}H)$ $(\bar{l}_{\alpha}\gamma^{\mu}\ell_{\beta})(\bar{q}_{i}\gamma_{\mu}u_{j})(H^{\dagger}\tau^{I}H)$ $(\bar{l}_{\alpha}\gamma^{\mu}l_{\beta})(\bar{d}_{i}\gamma_{\mu}u_{j})(H^{\dagger}\tau^{I}H)$ $(\bar{l}_{\alpha}\gamma^{\mu}l_{\beta})(\bar{d}_{i}\gamma_{\mu}d_{j})(H^{\dagger}\tau^{I}H)$ $(\bar{l}_{\alpha}\gamma^{\mu}l_{\beta})(\bar{d}_{i}\gamma_{\mu}d_{j})(H^{\dagger}\tau^{I}H)$ $(\bar{q}_{i}\gamma^{\mu}q_{j})(\bar{e}_{\alpha}\gamma_{\mu}e_{\beta})(H^{\dagger}H)$ $(\bar{q}_{i}\gamma^{\mu}\tau^{I}q_{j})(\bar{e}_{\alpha}\gamma_{\mu}e_{\beta})(H^{\dagger}\tau^{I}H)$	$ \begin{array}{c} \checkmark \\ pp \rightarrow \ell\ell \\ \checkmark \\ \checkmark$	$\begin{array}{c} - \\ pp \rightarrow \ell \nu \\ \hline \\ - \\ \checkmark \\ - \\ \checkmark \\ - \\ \checkmark \\ - \\ - \\ - \\ -$
$\begin{array}{c} \mathcal{O}_{e^2d^2D^2}^{(2)} \\ \hline \\ \mathbf{d} = 8 \\ \hline \\ \mathcal{O}_{l^2q^2H^2}^{(2)} \\ \mathcal{O}_{l^2q^2H^2}^{(2)} \\ \mathcal{O}_{l^2q^2H^2}^{(3)} \\ \mathcal{O}_{l^2q^2H^2}^{(5)} \\ \mathcal{O}_{l^2q^2H^2}^{(5)} \\ \mathcal{O}_{l^2u^2H^2}^{(2)} \\ \mathcal{O}_{l^2d^2H^2}^{(2)} \\ \mathcal{O}_{l^2d^2H^2}^{(2)} \\ \mathcal{O}_{l^2d^2H^2}^{(2)} \\ \mathcal{O}_{l^2d^2H^2}^{(2)} \\ \mathcal{O}_{q^2e^2H^2}^{(2)} \\ \mathcal{O}_{q^2e^2H^2}^{(2)} \\ \mathcal{O}_{e^2u^2H^2}^{(2)} \\ \mathcal{O}_{e^2u^2H^2}^$	$(\bar{e}_{\alpha}\gamma^{\mu}D^{\nu}e_{\beta})(d_{i}\gamma_{\mu}D_{\nu}d_{j})$ $\frac{\psi^{4}H^{2}}{(\bar{l}_{\alpha}\gamma^{\mu}l_{\beta})(\bar{q}_{i}\gamma_{\mu}q_{j})(H^{\dagger}H)}$ $(\bar{l}_{\alpha}\gamma^{\mu}\tau^{I}l_{\beta})(\bar{q}_{i}\gamma_{\mu}q_{j})(H^{\dagger}\tau^{I}H)$ $(\bar{l}_{\alpha}\gamma^{\mu}\tau^{I}l_{\beta})(\bar{q}_{i}\gamma_{\mu}\tau^{I}q_{j})(H^{\dagger}\tau^{I}H)$ $(\bar{l}_{\alpha}\gamma^{\mu}l_{\beta})(\bar{q}_{i}\gamma_{\mu}\tau^{J}q_{j})(H^{\dagger}\tau^{K}H)$ $(\bar{l}_{\alpha}\gamma^{\mu}l_{\beta})(\bar{u}_{i}\gamma_{\mu}u_{j})(H^{\dagger}\tau^{I}H)$ $(\bar{l}_{\alpha}\gamma^{\mu}l_{\beta})(\bar{d}_{i}\gamma_{\mu}d_{j})(H^{\dagger}\tau^{I}H)$ $(\bar{l}_{\alpha}\gamma^{\mu}\tau^{I}l_{\beta})(\bar{d}_{i}\gamma_{\mu}d_{j})(H^{\dagger}\tau^{I}H)$ $(\bar{l}_{\alpha}\gamma^{\mu}\tau^{I}l_{\beta})(\bar{d}_{i}\gamma_{\mu}d_{j})(H^{\dagger}\tau^{I}H)$ $(\bar{q}_{i}\gamma^{\mu}q_{j})(\bar{e}_{\alpha}\gamma_{\mu}e_{\beta})(H^{\dagger}\tau^{I}H)$ $(\bar{q}_{i}\gamma^{\mu}e_{\beta})(\bar{u}_{i}\gamma_{\mu}u_{j})(H^{\dagger}H)$ $(\bar{e}_{\alpha}\gamma^{\mu}e_{\beta})(\bar{u}_{i}\gamma_{\mu}u_{j})(H^{\dagger}H)$	$ \begin{array}{c} \checkmark \\ pp \rightarrow \ell \ell \\ \checkmark \\ \checkmark$	$-$ $pp \rightarrow \ell \nu$ $-$ \downarrow $-$ \downarrow $-$ \downarrow $-$ $-$ $-$ $-$ $-$ $-$ $-$ $-$ $-$ $-$

d=8	$\psi^2 H^2 D^3$	$pp \to \ell\ell$	$pp ightarrow \ell u$
$\mathcal{O}_{l^2H^2D^3}^{(1)}$	$i(ar{l}_lpha\gamma^\mu D^ u l_eta) (D_{(\mu}D_{ u)}H)^\dagger H$	\checkmark	_
$\mathcal{O}^{(2)}_{l^2H^2D^3}$	$i(ar{l}_lpha\gamma^\mu D^ u l_eta) H^\dagger(D_{(\mu}D_{ u)}H)$	\checkmark	-
$\mathcal{O}_{l^2 H^2 D^3}^{(3)}$	$i(ar{l}_{lpha}\gamma^{\mu} au^{I}D^{ u}l_{eta})\left(D_{(\mu}D_{ u)}H ight)^{\dagger} au^{I}H ight)$	\checkmark	\checkmark
$\mathcal{O}_{l^2H^2D^3}^{(4)}$	$i(\bar{l}_{lpha}\gamma^{\mu} au^{I}D^{ u}l_{eta})H^{\dagger} au^{I}(D_{(\mu}D_{ u)}H)$	\checkmark	\checkmark
$\mathcal{O}^{(1)}_{e^2H^2D^3}$	$i(ar{e}_lpha\gamma^\mu D^ u e_eta) \left(D_{(\mu}D_{ u)}H ight)^\dagger H ight)$	\checkmark	_
$\mathcal{O}_{e^{2}H^{2}D^{3}}^{(2)}$	$i(ar{e}_lpha\gamma^\mu D^ u e_eta) H^\dagger(D_{(\mu}D_{ u)}H)$	\checkmark	_
$\mathcal{O}_{q^2H^2D^3}^{(1)}$	$i(ar q_i\gamma^\mu D^ u q_j)(D_{(\mu}D_{ u)}H)^\dagger H$	\checkmark	-
${\cal O}_{q^2 H^2 D^3}^{(2)}$	$i(ar q_i\gamma^\mu D^ u q_j) H^\dagger(D_{(\mu}D_{ u)}H)$	\checkmark	-
$\mathcal{O}_{a^{2}H^{2}D^{3}}^{(3)}$	$i(ar q_i\gamma^\mu au^I D^ u q_j) \left(D_{(\mu}D_{ u)}H ight)^\dagger au^I H$	\checkmark	\checkmark
${\cal O}_{q^2H^2D^3}^{(4)}$	$i(ar q_i \gamma^\mu au^I D^ u q_j) H^\dagger au^I (D_{(\mu} D_{ u)} H)$	\checkmark	\checkmark
$\mathcal{O}_{u^2 H^2 D^3}^{(1)}$	$i(ar{u}_i\gamma^\mu D^ u u_j) \left(D_{(\mu}D_{ u)}H ight)^\dagger H$	\checkmark	_
$\mathcal{O}_{u^2H^2D^3}^{(2)^{}}$	$i(ar{u}_i\gamma^\mu D^ u u_j)H^\dagger(D_{(\mu}D_{ u)}H)$	\checkmark	-
$\mathcal{O}_{d^{2}H^{2}D^{3}}^{(1)}$	$i(ar{d_i}\gamma^\mu D^ u d_j) \left(D_{(\mu}D_{ u)}H ight)^\dagger H$	\checkmark	_
$\mathcal{O}_{d^2H^2D^3}^{(2)}$	$i(ar{d}_i\gamma^\mu D^ u d_j) H^\dagger(D_{(\mu}D_{ u)}H)$	\checkmark	_
_			_
$\frac{d=8}{(1)}$	$\psi^2 H^4 D$	pp —	$ ightarrow \ell\ell pp ightarrow \ell u$
$\mathcal{O}_{l^2H^4D}^{(1)}$	$i(\bar{l}_{\alpha}\gamma^{\mu}l_{\beta})(H^{\dagger}D_{\mu}H)(H^{\dagger}H)$	√	_
$\mathcal{O}^{(2)}_{l^{2}_{2}H^{4}D} i(l_{\alpha}$	$_{\mu}\gamma^{\mu}\tau^{I}l_{\beta})[(H^{\dagger}D_{\mu}^{I}H)(H^{\dagger}H) + (H^{\dagger}D_{\mu}H)(H^{\dagger}\eta)$	$(\tau^{I}H)] \qquad \checkmark$	\checkmark
$\mathcal{O}_{l^2H^4D}^{(3)}$	$\epsilon^{IJK}(ar{l}_{lpha}\gamma^{\mu} au^{I}l_{eta})(H^{\dagger}D^{J}_{\mu}H)(H^{\dagger} au^{K}H)$	_	\checkmark
$\mathcal{O}_{l^2H^4D}^{(4)}$	$\epsilon^{IJK}(\bar{l}_{\alpha}\gamma^{\mu}\tau^{I}l_{\beta})(H^{\dagger}\tau^{J}H)(D_{\mu}H)^{\dagger}\tau^{K}H$		✓
$\mathcal{O}_{q^2H^4D}^{(1)}$	$i(ar{q}_i\gamma^\mu q_j)(H^\dagger D_\mu H)(H^\dagger H)$	\checkmark	_
$\mathcal{O}^{(2)}_{q^2H^4D}$ $i(ar{q}_i$	$(\gamma^{\mu}\tau^{I}q_{j})[(H^{\dagger}\overleftrightarrow{D}_{\mu}^{I}H)(H^{\dagger}H) + (H^{\dagger}\overleftrightarrow{D}_{\mu}H)(H^{\dagger}\eta)]$	$r^{I}H)] \qquad \checkmark$	\checkmark
$\mathcal{O}_{a^{2}H^{4}D}^{(3)}$	$i\epsilon^{IJK}(ar{q}_i\gamma^\mu au^Iq_j)(H^\dagger\overleftrightarrow{D}^J_\mu H)(H^\dagger au^K H)$	-	\checkmark
$\mathcal{O}_{q^2H^4D}^{(4)}$	$\epsilon^{IJK}(\bar{q}_i\gamma^{\mu}\tau^I q_j)(H^{\dagger}\tau^J H)(D_{\mu}H)^{\dagger}\tau^K H$		✓
$\mathcal{O}_{e^2H^4D}$	$i(\overline{e}_{lpha}\gamma^{\mu}e_{eta})(H^{\dagger}\overleftrightarrow{D}_{\mu}H)(H^{\dagger}H)$	\checkmark	_
$\mathcal{O}_{u^2H^4D}$	$i(ar{u}_i\gamma^\mu u_j)(H^\dagger \overleftrightarrow{D}_\mu H)(H^\dagger H)$	\checkmark	_
$\mathcal{O}_{d^2H^4D}$	$i(ar{d}_i\gamma^\mu d_j)(H^\dagger \overleftrightarrow{D}_\mu H)(H^\dagger H)$	\checkmark	
_			_

Explicit NP models

• Explicit NP models: colorless and colorful mediators

		SM rep.	Spin	$\mathcal{L}_{ ext{int}}$
	Z'	(1 , 1 ,0)	1	$\mathcal{L}_{Z'} = \sum_{\psi} [g_1^{\psi}]^{ab} ar{\psi}_a Z' \psi_b \;\;, \;\; \psi \in \{u,d,e,q,l\}$
Colorless	W'	(1 , 3 ,0)	1	$\mathcal{L}_{W'} = [g_3^q]^{ij} ar{q}_i W' q_j + [g_3^l]^{lpha eta} ar{l}_lpha W' l_eta$
mediators	\widetilde{Z}	(1 , 1 ,1)	1	$\mathcal{L}_{\widetilde{Z}} = [\widetilde{g}_1^q]^{ij} \bar{u}_i \widetilde{Z} d_j + [\widetilde{g}_1^\ell]^{lpha eta} \bar{e}_lpha \widetilde{Z} u_eta$
	$\Phi_{1,2}$	$({f 1},{f 2},1/2)$	0	$\mathcal{L}_{2\text{HDM}} = [\lambda_2^u]^{ij} \bar{q}_i u_j \Phi_2^c + [\lambda_2^d]^{ij} \bar{q}_i d_j \Phi_1 + [\lambda_2^e]^{\alpha\beta} \bar{l}_\alpha e_\beta \Phi_1 + \text{h.c.}$
	S_1	$(\bar{3},1,1/3)$	0	$\mathcal{L}_{S_1} = [y_1^L]^{i\alpha} S_1 \bar{q}_i^c \epsilon l_\alpha + [y_1^R]^{i\alpha} S_1 \bar{u}_i^c e_\alpha + [\bar{y}_1^R]^{i\alpha} S_1 \bar{d}_i^c \nu_\alpha + \text{h.c.}$
	\widetilde{S}_1	$(\mathbf{\bar{3}},1,4/3)$	0	$\mathcal{L}_{\widetilde{S}_1} = [\widetilde{y}_1^R]^{ilpha} \widetilde{S}_1 ar{d}_i^c e_lpha + ext{h.c.}$
	U_1	(3 , 1 ,2/3)	1	$\mathcal{L}_{U_1} = [x_1^L]^{i\alpha} \bar{q}_i \not\!\!U_1 l_\alpha + [x_1^R]^{i\alpha} \bar{d}_i \not\!\!U_1 e_\alpha + [\bar{x}_1^R]^{i\alpha} \bar{u}_i \not\!\!U_1 \nu_\alpha + \text{h.c.}$
	\widetilde{U}_1	$({f 3},{f 1},5/3)$	1	$\mathcal{L}_{\widetilde{U}_1} = [\widetilde{x}_1^R]^{ilpha} ar{u}_i \widetilde{U}_1 e_lpha + ext{h.c.}$
Loptoquarke	R_2	$({f 3},{f 2},7/6)$	0	$\mathcal{L}_{R_2} = -[y_2^L]^{ilpha} ar{u}_i R_2 \epsilon l_lpha + [y_2^R]^{ilpha} ar{q}_i e_lpha R_2 + ext{h.c.}$
Lepioquarks	\widetilde{R}_2	$({f 3},{f 2},1/6)$	0	$\mathcal{L}_{\widetilde{R}_2} = -[\widetilde{y}_2^L]^{ilpha} ar{d}_i \widetilde{R}_2 \epsilon l_lpha + [\widetilde{y}_2^R]^{ilpha} ar{q}_i u_lpha \widetilde{R}_2 + ext{h.c.}$
	V_2	$(\bar{3},2,5/6)$	1	$\mathcal{L}_{V_2} = [x_2^L]^{ilpha} ar{d}_i^c oldsymbol{V}_2 \epsilon l_lpha + [x_2^R]^{ilpha} ar{q}_i^c \epsilon oldsymbol{V}_2 e_lpha + \mathrm{h.c.}$
	\widetilde{V}_2	$(\bar{3},2,-1/6)$	1	$\mathcal{L}_{\widetilde{V}_{2}} = [\widetilde{x}_{2}^{L}]^{i\alpha} \bar{u}_{i}^{c} \widetilde{V}_{2} \epsilon l_{\alpha} + [\widetilde{x}_{2}^{R}]^{i\alpha} \bar{q}_{i}^{c} \epsilon \widetilde{V}_{2} \nu_{\alpha} + \text{h.c.}$
	S_3	$(\mathbf{\bar{3}},3,1/3)$	0	$\mathcal{L}_{S_3} = [y_3^L]^{ilpha}ar{q}_i^c \epsilon S_3 l_lpha + ext{h.c.}$
	U_3	(3 , 3 ,2/3)	1	$\mathcal{L}_{U_3} = [x_3^L]^{ilpha} ar{q}_i ot\!$

Felix Wilsch

Some NP contributions to $F_{I, \text{Poles}}(\hat{s}, \hat{t})$

 \blacksquare Straight forward matching to pole form-factors in *s*, *t*, *u* channel

High- $p_{\rm T}$ constraints for semileptonic operators in the SMEFT – HEFT 2022

U_1 searches by CMS

CMS di-tau search

CMS exclusion limits on the U_1 LQ

Felix Wilsch

Complementarity of high- $p_{\rm T}$ data

• LFV: high- p_T tails vs low-energy flavor observables

• Constraints on $c \rightarrow u\ell\ell$

Recast of heavy LFV resonance search ATLAS [1807.06573]

- Limits from quark flavor conserving transitions much better than Quarkonia limits
- Possibility of probing charm transitions much better than low energy experiments

Universität

Zürich