CP violation for electroweak baryogenesis in SMEFT

Henning Bahl, EF, Sven Heinemeyer, Judith Katzy, Marco Menen, Krisztian Peters, Matthias Saimpert and Georg Weiglein 2202.11753

Elina Fuchs CERN & LU Hannover & PTB

HEFT 2022, Granada June 15, 2022

Leibniz Universität Hannover

BSM CP violation for baryon asymmetry

Sakharov conditions for baryon asymmetry I. B number violation II. CP violation III. Out of thermal equilibrium

- Observed baryon asymmetry $Y_B^{\rm obs} = \frac{n_B n_{\bar{B}}}{n_{\gamma}} \sim 10^{-10}$
- SM: $\delta_{\rm CKM}$ and $\bar{\theta}_{\rm QCD} < 10^{-10}$ by far insufficient

Gavela, Hernandez, Orloff, Pene '93 Huet, Sather '94

Need CP violation beyond the SM

Electroweak baryogenesis: during e.w. phase transition → connected to the Higgs → potentially testable at colliders

Timely: CP-odd observables at LHC

CMS 2110.04836, CMS-HIG-20-006

CMS H \rightarrow TT analysis

Outline

1.) Framework

2.) Baryogenesis

3.) Electric dipole moments

4.) Higgs signal strengths and angular observables at the LHC

5.) Complementarity

Complex Yukawa in SMEFT dim-6

• Consider dim-6 Yukawa with real and imaginary part $\frac{1}{1}$

$$\mathcal{L}_{\text{Yuk}} = Y_f \overline{F_L} F_R H + \frac{1}{\Lambda^2} (X_R^f + i X_I^f) |H|^2 \overline{F_L} F_R H. + \text{h.c.}$$

cf [de Vries, Postma, van de Vies '18] where $X \equiv \pm i Y_f$

• Relative size of dim-6 normalized to dim-4 $T = m_f^{(6)}/m_f^{(4)}$ Our coordinates $T_{R,I}^f = \frac{v^2}{2\Lambda^2} \frac{X_{R,I}^f}{Y^f}$

Complex Yukawa in SMEFT dim-6

• Consider dim-6 Yukawa with real and imaginary part $\mathcal{L}_{Yuk} = Y_f \overline{F_L} F_R H + \frac{1}{\Lambda^2} (X_R^f + i X_I^f) |H|^2 \overline{F_L} F_R H. + h.c.$

cf [de Vries, Postma, van de Vies '18] where $X \equiv \pm i Y_f$

• Relative size of dim-6 normalized to dim-4 $T=m_f^{(6)}/m_f^{(4)}$ $T_{R,I}^f = \frac{v^2}{2\Lambda^2} \frac{X_{R,I}^f}{v^f}$ Our coordinates ------ $\mathcal{L}_f = \frac{y_f v}{\sqrt{2}} \left[1 + \frac{v^2}{2\Lambda^2} \frac{X_R^f + iX_I^f}{y_f} \right] \overline{f_L} f_R + \frac{y_f}{\sqrt{2}} \left[1 + \frac{3v^2}{2\Lambda^2} \frac{X_R^f + iX_I^f}{y_f} \right] \overline{f_L} f_R h$ Full Lagrangian → focus on Yukawa $+\frac{3v}{2\sqrt{2}\Lambda^2}(X_R^f+iX_I^f)\overline{f_L}f_Rhh+\frac{1}{2\sqrt{2}\Lambda^2}(X_R^f+iX_I^f)\overline{f_L}f_Rhhh.$ & mass terms

Impact on fermion mass & Yukawa

$$m_f = \frac{Y_f v}{\sqrt{2}} \left(1 + T_R^f + i T_I^f \right), \quad \lambda_f = \frac{Y_f}{\sqrt{2}} \left(1 + 3 T_R^f + 3 i T_I^f \right)$$

rotate into basis where mass is real
$$m_f \overline{f_L} f_R = \frac{T_I^f}{1 + T_R^f}$$

$$\frac{Y_f v}{\sqrt{2}} \left[1 + T_R^f + \mathcal{O}(T^{f2}) \right]$$

$$\frac{T_{f}}{\sqrt{2}} \left[1 + 3T_{R}^{f} + 2iT_{I}^{f} + \mathcal{O}(T^{f2}) \right].$$

Higgs characterization model

Consider also simpler description of effective Higgs coupling modifiers (kappa framework)

$$\mathcal{L}_{\text{Yuk}} = -\sum_{f} \frac{y_f}{\sqrt{2}} \bar{f} \left(c_f + i\gamma_5 \tilde{c}_f \right) fh, \qquad \qquad h = \sqrt{f} \bar{f}$$

Translate kappa SMEFT: $g_f = c_f + i\tilde{c}_f = 3 - \frac{2}{1 + T_f^R + iT_f^I}$ with $T_f^{R,I} \equiv \frac{v^2}{2\Lambda^2} \frac{X_f^{R,I}}{y_f}$

Allow also modifications of real parts of HVV couplings $\mathcal{L}_V = c_V H \left(\frac{M_Z^2}{v} Z_\mu Z^\mu + 2 \frac{M_W^2}{v} W^+_\mu W^{-\mu} \right)$

Capture BSM effects in effective Hgg and Hyy couplings: $c_g, \widetilde{c}_g, c_\gamma, \widetilde{c}_\gamma$

($a \qquad \sum \overline{\overline{D}} \overline{D} \overline{D} \overline{D} \overline{D}$	1 $(\mathbf{r}_{f} + \mathbf{r}_{f}) + \mathbf{r}_{f}^{2} = \mathbf{r}_{f}$	used in EF , Losada, Nir, Viernik '19, '20, '20
SMEFT of dim. 6	$\mathcal{L}_{Yuk} = -\sum y_f F_L F_R H +$	$-\frac{1}{\Lambda^2} \left(\frac{X_R}{R} + i \frac{X_I}{I} \right) H ^2 F_L F_R H + \text{h.c.}$	see also de Vries, Postma, v. de Vis '19;
	$\frac{f}{f}$	Λ^2	Brod, Cornell, Skodras, Stamou '22

SMEFT of dim. 6
$$\mathcal{L}_{Yuk} = -\sum_{f} y_f \overline{F_L} F_R H + \frac{1}{\Lambda^2} (X_R^f + i X_I^f) |H|^2 \overline{F_L} F_R H + h.c.$$
 used in EF, Losada, Nir, Viernik '19, '20, '20
see also de Vries, Postma, v. de Vis '19;
Brod, Cornell, Skodras, Stamou '22

kappa framework
$$\mathcal{L}_{Yuk} = -\sum_{f} \frac{g_{f}}{\sqrt{2}} \bar{f} (c_{f} + i\gamma_{5}\tilde{c}_{f}) fh,$$

used in Bahl, **EF** et al 2202.11753 see also Aharony Shapira '21

BSM for baryogenesis: **focus here on CPV**, assume electroweak phase transition can be enhanced separately → later: models

15/06/2022

insufficient in SM: need BSM for

- CP violation
- 1st order electroweak phase transition

Bubbles of the broken phase expand Lots of literature, e.g.

Joyce, Prokopec, Turok '95; Cline '06;Morissey, Ramsey-Musolf '12; Konstandin '13; White '16; de Vries, Postma, van de Vis, White '16; de Vries, Postma, van de Vis '18; Garbrecht '18; Bödeker, Buchmüller '20; Alonso-Gonzalez, Giorgio, Merlo, Pokorski '21...

$$\partial_{\mu}f^{\mu} = -\Gamma_{M}^{f}\mu_{M}^{f} - \Gamma_{Y}^{f}\mu_{Y}^{f} + \Gamma_{ss}^{f}\mu_{ss} - \Gamma_{ws}^{f}\mu_{ws}^{f} + S_{f}$$
relaxation Yukawa Strong weak CPV
source sphaleron sphaleron

Electron's Electric Dipole Moment

ACME [Nature '18]: $d_e \leq 1.1 \times 10^{-29} e \text{ cm at } 90\% \text{ CL}$ for t, b, c, t, µ: electron EDM most sensitive

Using [Panico, Pomarol, Riembau '18], [Brod, Haisch, Zupan '13], [Brod, Stamou '18],... See also recent [Brod, Cornell, Skodras, Stamou '22]

 $\Rightarrow CP$

Electron's Electric Dipole Moment

ACME [Nature '18]:

$$d_e \leq 1.1 \times 10^{-29} e \text{ cm at } 90\% \text{ CL}$$

for t, b, c, t, µ: electron EDM most sensitive

Using [Panico, Pomarol, Riembau '18], [Brod, Haisch, Zupan '13], [Brod, Stamou '18],... See also recent [Brod, Cornell, Skodras, Stamou '22]

e

CP structure of Higgs couplings - T

$$\mathcal{L}_{\text{Yuk}} = -\sum_{f} \frac{y_{f}}{\sqrt{2}} \bar{f} \left(\mathbf{c_{f}} + i\gamma_{5} \tilde{\mathbf{c}_{f}} \right) fh,$$

Bahl, EF, Heinemeyer, Katzy, Menen, Peters, Saimpert, Weiglein '22

Global fit using **HiggsSignals** + recent analyses

Ring-structure from upper/lower bound on BR

CP structure of Higgs couplings - T

Complementary (τ): LHC, EDM, EWBG

Bahl, EF, Heinemeyer, Katzy, Menen, Peters, Saimpert, Weiglein '22

Complementary (τ): LHC, EDM, EWBG

Bahl, EF, Heinemeyer, Katzy, Menen, Peters, Saimpert, Weiglein '22

Complementary (T): LHC, EDM, EWBG

Bahl, EF, Heinemeyer, Katzy, Menen, Peters, Saimpert, Weiglein '22

See also

Complementary (T): LHC, EDM, EWBG

Bahl, EF, Heinemeyer, Katzy, Menen, Peters, Saimpert, Weiglein '22

15/06/2022

See also
Role of muon

Role of muon

Complementarity

t, b: cancellations of EDM allow larger CPV

Combined: max. 42% of observed BAU

Also evaluated models with universal fermion coupling modifiers, and with vector coupling modifiers; investigated also complex electron Yukawa

SMEFT: Cut-off scales

SMEFT: Cut-off scales

Role of the electron

Interpretation of eEDM depends strongly on c_e. If c_e small \rightarrow bound on other \tilde{c}_f much weakened

Role of the electron

Interpretation of eEDM depends strongly on c_e. If c_e small \rightarrow bound on other \tilde{c}_f much weakened

EDMs and CPC LHC Higgs rates

Brod, Cornell, Skodras, Stamou 2203.03736

Global fit in SMEFT in mass eigenstate basis

- n, Hg, e EDMs
- RG evolution
- d_e most sensitive to c and 3^{rd} gen.
- From 90% upper limit to likelihood: assuming Gaussian distribution of exp. uncertainty

LHC Higgs rates

CP-conserving

Directions to improve tests of CPV

- Long-standing discrepancy in EWBG calculation
 - Perturbative VIA gives much larger prediction of Y_Bthan WKB, up to orders of magnitude
- Need likelihood from EDM bounds for global fit
- Improve (HL-)LHC studies of CPV in Higgs couplings
 - CP-odd observables
 - Machine Learning
- LHC HXSWG CPV subgroup in WG2, e.g.
 - CPV Benchmarks for UV models and EFT
 - Interplay of LHC and EDMs

Investigate further to which extent CPV in Higgs couplings can account for EWBG

Conclusions

- Complementarity of EDM, EWBG and LHC Higgs physics
- H \rightarrow TT CP analysis excludes large \tilde{c}_{τ} , but T remains viable EWBG source (VIA LO)
- LHC constrains cosmological scenarios, separates flavors; now also 2nd gen.
- Cancellations and enhancements with 2 fermions, e.g. t+b: few $\% \rightarrow \sim 40\%$ of obs. Y_B
- Electron Yukawa has big impact on interpretation of electron EDM
- + SMEFT generates Yukawa modifications, preferred scale $\Lambda/\sqrt{X_I}\sim$ few-10-20 TeV

THANK YOU!

T_{R}, T_{I}, Y_{f}

Relation between SM mass and Yukawa fixes Y_f (a priori free coefficient of dim-4 term)

 $T_{R'} T_{I'} Y_{f} \rightarrow 2$ free parameters per fermion: T_{R} , $T_{I'}$

$$\begin{array}{ll} \text{Modification of each vertex w.r.t. } \text{SM}_f(T_R^f,T_I^f) \equiv \frac{|\lambda_f|^2/|\lambda_f^{\text{SM}}|^2}{|m_f|^2/|m_f^{\text{SM}}|^2} = \frac{(1+3T_R^f)^2 + 9T_I^{f2}}{(1+T_R^f)^2 + T_I^{f2}}\\ & \text{production,}\\ & \text{decay} \end{array}$$

$$\begin{array}{ll} \text{Total Higgs width} & \Gamma_h/\Gamma_h^{\text{SM}} = 1 + \text{BR}_f^{\text{SM}}(r_f - 1) \end{array}$$

Transport equations

$$\begin{split} \partial f \equiv \partial_{\mu} f^{\mu} &\approx v_{w} f' - D_{f} f'' \quad \text{Diffusion approximation} \\ \partial t &= -\Gamma_{M}^{t} \mu_{M}^{t} - \Gamma_{Y}^{t} \mu_{Y}^{t} + \Gamma_{ss} \mu_{ss} + S_{t} \\ \partial b &= -\Gamma_{M}^{b} \mu_{M}^{b} - \Gamma_{Y}^{b} \mu_{Y}^{b} + \Gamma_{ss} \mu_{ss} + S_{b} \\ \partial q &= -\partial t - \partial b \\ \partial \tau &= -\Gamma_{M}^{\tau} \mu_{M}^{\tau} - \Gamma_{Y}^{\tau} \mu_{Y}^{\tau} + S_{\tau} \\ \partial l &= -\partial \tau \\ \partial h &= +\Gamma_{Y}^{t} \mu_{Y}^{t} - \Gamma_{Y}^{b} \mu_{Y}^{b} - \Gamma_{Y}^{\tau} \mu_{Y}^{\tau} \\ \partial u &= +\Gamma_{ss} \mu_{ss} \,. \end{split}$$

Electron's Electric Dipole Moment

d_e[e cm]:

tau

tau

15/06/2022

d [e cm]:

bottom

Brod, Haisch, Zupan '13

Top, bottom, and their combination

Bahl, **EF**, Heinemeyer, Katzy, Menen, Peters, Saimpert, Weiglein '22

Top, bottom, and their combination

Bahl, **EF,** Heinemeyer, Katzy, Menen, Peters, Saimpert, Weiglein '22

Floating several coupling modifiers simultaneously

Varying vector couplings

Varying vector couplings

General model: 9-parameter fit

Bahl, **EF**, Heinemeyer, Katzy, Menen, Peters, Saimpert, Weiglein '22

- Lepton advantages:
 - No strong sphaleron washout
 - Large diffusion
 - τ: still sizeable Yukawa
 - μ: weak EDM bound

- Lepton advantages:
 - No strong sphaleron washout
 - Large diffusion
 - τ: still sizeable Yukawa
 - μ: weak EDM bound

- **Robustness:** T overshoots Y_b^{obs}
 - O(1) uncertainties do not change conclusion
 - Quarks larger uncertainties

- Lepton advantages:
 - No strong sphaleron washout
 - Large diffusion
 - τ: still sizeable Yukawa
 - μ: weak EDM bound

- Robustness: τ overshoots Y_b^{obs}
 - O(1) uncertainties do not change conclusion
 - Quarks larger uncertainties
- Benchmark choices:
 - Wall velocity, thickness, ...
 - → investigated impact in 2007.06940, see also Postma, van de Vis, White '16; de Vries, Postma, van de Vis '18;

2-step: baryon density from L density

Solve for left-handed particle density or directly baryon density

$$n_b''(z) - \frac{v_w}{D_q} n_b'(z) = \frac{\Gamma_{ws}(z)}{D_q} \left(\mathcal{R}n_b(z) + \frac{3}{2}n_L(z) \right) \equiv \frac{\Gamma_{ws}(z)}{D_q} \mathcal{R}n_b + f(z)$$

$$Y_B = \frac{n_b(z > 0)}{s} = \frac{A_1}{s} = \frac{1}{s} \left(1 - \frac{\alpha_-}{\alpha_+} \right) B_1 = \frac{k}{D_q \alpha_+ s} B_1$$
$$= \frac{3\Gamma_{ws}}{2D_q \alpha_+ s} \int_0^{-\infty} e^{-\alpha_- x} n_L(x) dx \,.$$

Chemical potentials

$$\mu_{M}^{t} = \frac{t}{k_{t}} - \frac{q}{k_{q}}, \qquad \mu_{M}^{b} = \frac{b}{k_{b}} - \frac{q}{k_{q}}, \qquad \mu_{M}^{\tau} = \frac{\tau}{k_{\tau}} - \frac{l}{k_{l}},$$
$$\mu_{Y}^{t} = \frac{t}{k_{t}} - \frac{q}{k_{q}} - \frac{h}{k_{h}}, \qquad \mu_{Y}^{b} = \frac{b}{k_{b}} - \frac{q}{k_{q}} + \frac{h}{k_{h}}, \qquad \mu_{Y}^{\tau} = \frac{\tau}{k_{\tau}} - \frac{l}{k_{l}} + \frac{h}{k_{h}},$$

$$\mu_{ss} = \sum_{i=1}^{3} \frac{2q_i}{k_{q_i}} - \frac{u_i}{k_{u_i}} - \frac{d_i}{k_{d_i}} \,.$$

Matrix formalism: o.d.e. 1st order

$$\begin{pmatrix} t'\\b'\\\vdots\\g'_t\\g'_b\\\vdots \end{pmatrix} - \begin{pmatrix} 0 & 1 & & \\ 0 & 1 & & \\ & \ddots & & \ddots & \\ & \frac{v_w}{D_t} & & \\ & & \frac{v_w}{D_b} & & \\ & & \ddots & \end{pmatrix} \begin{pmatrix} t\\b\\\vdots\\g_t\\g_b\\\vdots \end{pmatrix} = \begin{pmatrix} 0 & & & \\ & \ddots & & \\ & \frac{\Gamma_t}{D_t k_t} & & & \\ & \frac{\Gamma_b}{D_b k_b} & & \ddots & \\ & & \frac{\Gamma_b}{D_b k_b} & & \ddots & \\ & & \frac{\Gamma_b}{D_b k_b} & & \ddots & \\ & & & \ddots & 0 \end{pmatrix} \begin{pmatrix} t\\b\\\vdots\\g_t\\g_b\\\vdots \end{pmatrix} + \begin{pmatrix} 0\\0\\\vdots\\g_t\\g_b\\\vdots\\S^{t/D_t}\\S^{$$

Fuchs, Losada, Nir, Viernik '20

Particle dynamics

- CPV interactions across the expanding bubble wall **generate a chiral asymmetry**
- CPC interactions **wash out** the generated asymmetry
- Strong sphaleron process produces further washout in the quark sector
- Some of the remaining asymmetry diffuses into the symmetric phase; more efficient for leptons than quarks.
- Weak sphaleron process is efficient only in the symmetric phase, acting on left-handed multiplets and changing baryon number.
- Finally, the bubble wall catches up and freezes in the resulting baryon number density in the broken phase.

Thin-wall approximation

Fuchs, Losada, Nir, Viernik '20

Uncertainty of $Y_{\rm B}$ from input rates

Parameter dependence; 1-/2-step

CP violation in the Higgs sector

- Discovered Higgs compatible with J^{PC}=0⁺⁺
- Small CP-odd component possible

CP violation in the Higgs sector

CMS 1903.06973: HVV anomalous couplings

- Discovered Higgs compatible with J^{PC}=0⁺⁺
- Small CP-odd component possible

Until recently: mostly searches for CPV in hVV

2020: LHC bounds on CPV in Yukawas

2020: LHC bounds on CPV in Yukawas

CMS htt CPV

Pure CP-odd excluded at: 3.2σ

CPV ATLAS $h \rightarrow \tau \tau$: Prospects for HL

This note presents a study for the prospective measurement of the $C\mathcal{P}$ quantum number of the Higgs boson coupling to τ leptons with 3000 fb⁻¹ of proton–proton collisions at $\sqrt{s} = 14$ TeV using the ATLAS detector at the HL-LHC. Only $H \to \tau\tau$ events where both τ leptons decay via the $\tau^{\pm} \to \rho^{\pm} v_{\tau} \to \pi^0 \pi^{\pm} v_{\tau}$ chain are analysed and the acoplanarity angle $\varphi^*_{C\mathcal{P}}$, the angle between the planes spanned by the pion pairs, is used to determine the $C\mathcal{P}$ -mixing angle. It is shown that considering only statistical uncertainties, a pseudoscalar Higgs boson can be excluded at 95% confidence level. The $C\mathcal{P}$ -mixing angle can be measured with a statistical precision ranging between $\pm 18^{\circ}$ and $\pm 33^{\circ}$, depending on the precision of the π^0 reconstruction

$$\mathcal{L} = g_{\tau\tau}(\cos(\phi_{\tau})\overline{\tau}\tau + \sin(\phi_{\tau})\overline{\tau}i\gamma_{5}\tau)h$$

ATLAS PHYS-PUB-2019-008

EDMs: e, n, Hg

