

A new constraint for matter/antimatter asymmetries

Elser Adolfo López Rosa

Supervised by: Anna Lupato and Conor Fitzpatrick University of Manchester, LHCb Group

The University of Manchester

CP Violation in the Standard Model

 In the Standard Model the CP violation is due to complex phase in the Cabibbo-Kobayashi-Maskawa (CKM) matrix, that describes the charged-current weak interactions

$$\mathcal{L}_{cc} = \frac{g}{\sqrt{2}} \begin{pmatrix} \bar{u} & \bar{c} & \bar{t} \end{pmatrix} V_{\text{CKM}} \gamma^{\mu} \frac{(1-\gamma^5)}{2} \begin{pmatrix} d \\ s \\ b \end{pmatrix} W_{\mu}^{+} + h.c..$$

- Why do we measure CPV?
 - SM alone can't explain observed matter-antimatter asymmetry -> new physics must be there.

• The unitarity of the CKM matrix lead to

 $V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$

- That can be represent in an unitary triangle in the complex plane
- The area of this triangle is proportional to the CPV

Time dependent CP asymmetries and y

- The time dependent the CP asymmetries allow to constrain the gamma angle of the CKM matrix
- The CPV in $B^0 \rightarrow D^-\pi^+ B^0 \rightarrow D^+\pi^-$ appears in the interference between the decay with the mixing and the decay without mixing at tree level

$$\gamma \equiv \arg(-V_{ud}V_{ub}^*/V_{cd}V_{cb}^*)$$

• The decay time dependent CP asymmetries in these decays can be measured by analysing the decay rates of a function of B⁰ mesons of know initial flavor.

 $\Gamma_{B^0 \to \bar{f}}(t) \propto e^{-\Gamma t} \left[1 + C_{\bar{f}} \cos(\Delta m t) - S_{\bar{f}} \sin(\Delta m t) \right], \qquad \Gamma_{B^0 \to f}(t) \propto e^{-\Gamma t} \left[1 + C_f \cos(\Delta m t) - S_f \sin(\Delta m t) \right],$

$$S_{f} = -\frac{2r_{D\pi}\sin[\delta - (\gamma + 2\beta)]}{1 + r_{D\pi}^{2}}, \qquad S_{\bar{f}} = \frac{2r_{D\pi}\sin[\delta + (\gamma + 2\beta)]}{1 + r_{D\pi}^{2}}, \\ D_{f} = -\frac{2r_{D\pi}\cos[\delta - (\gamma + 2\beta)]}{1 + r_{D\pi}^{2}}, \qquad D_{\bar{f}} = -\frac{2r_{D\pi}\cos[\delta + (\gamma + 2\beta)]}{1 + r_{D\pi}^{2}}, \\ C_{f} = -C_{\bar{f}} = C = \frac{1 - r_{D\pi}^{2}}{1 + r_{D\pi}^{2}}, \\ r_{D\pi} = |A(B^{0} \to D^{+}\pi^{-})/A(B^{0} \to D^{-}\pi^{+})|$$

• Measuring these parameters, we can extract the gamma angle using an external input for the beta angle and $r_{D\pi}$

Selection

- Dataset: 2015, 2016, 2017, 2018 LHCb Data corresponding to $\mathscr{L} \sim 6 fb^{-1}$
- Decay chanel: $B^0 \rightarrow D^- \pi^+ B^0 \rightarrow D^+ \pi^-$
- The semileptonic decays were not taken into account
- To identify the B decay:
 - The $D^- \rightarrow K^+ \pi^- \pi^-$ candidates are reconstructed from charged particle tracks with high **P** and **P**_T and from a common displaced vertex.
 - \circ The invariant mass of this particles together is required to be within 35 MeV/c² of the known value of the D⁻
 - Particle identification is used to select kaon and pion candidates.
 - This candidates are combined with a pion to form the B vertex displaced from any PV
- The selection is based on:
 - Software and hardware trigger,
 - Vetos for misidentify background wrongly associated primary vertex
 - Cut based preselection
 - Boosted decision tree (machine learning algorithm) to increase the signal purity

Cut based selection

We defined these selections requiring on the simulated samples the Monte Carlo truth: these variables ensure that we have considered the correct simulated sample

Description	Requirement
Trigger requirements	Hlt1TrackAllL0 && (Hlt2IncPhi Hlt2Topo2(3)BodyBBDT)
BDTG response	> 0.1
$m(D^-\pi^+)$ mass	$[5000, 6000]$ MeV/ c^2
$m(K^+\pi^-\pi^-)$ mass	$[1830, 1920]$ MeV/ c^2
D^- lifetime wrt. to B^0	>0 ps
D^- vertex separation wrt. B^0	> 9
$m(K\pi)$	$< 840 \text{MeV}/c^2$
$B \to D^0 K \pi, \ D^0 \to K \pi $ veto	
$m(D^-\pi)$ with π misID as K	\notin [1850, 1890] MeV/ c^2
semileptonic backgrounds veto:	
$PID\mu$	< 2
$B \to D^*(D^0\pi)\pi, D^0 \to K\pi$ veto:	
$(m_{D^-} - m(K\pi))$	$> 200 { m MeV}/c^2$
Λ_c^+ veto:	
p veto for pions	PIDp < 0, or
D^- under Λ_c^+ hypothesis	\notin [2255, 2315] MeV/ c^2
D_s veto:	
kaon veto for pions	PIDK > 0, or
D^- under D_s hypothesis	$\notin [1950, 2030] \mathrm{MeV}/c^2$

Cosine of the angle between the momentum of D meson and the direction of the best PV to the decay vertex.

Signal and Background decays

- Signal: $B^0 \to D^- \pi^+$
- Backgrounds: all decays that can be confused with our signal. Because:
 - they have the same particles in the final state
 - their final state is a part of searched signal
 - one or more particle are misidentify
- In order to clean the data we need to identified background decays:
 - $B^0 \to \Lambda_c^- \pi^+$
 - $B^0 \to D_d^- K$
 - $B^0 \to D_d^- \rho$ -
 - $B^0 \to D_s^- \pi^+$
 - $B^0 \to D_s^* \pi^+$
 - Combinatorial Background: It's the background forms by random combination of tracks
- Pion-like decays have a peak at the know B mass 5279.65 ± 0.12 MeV/c² with a width of about 20 Mev/c²

- Fit to the invariant mass distribution in order to extract the signal $B^0 \rightarrow D^- \pi^+ B^0 \rightarrow D^+ \pi^-$ decays
 - The aim of my project: identify all processes that are not interesting for our analysis and parameterized these contributions with the most accurate shape
- Training calibration of algorithm necessary to infer the initial flavor of reconstructing B candidates
- Estimation of the CP parameters by means all a fit of the distribution of decay time observables

Backgrounds

contributing 1/N to the total integral of the pdf.

Backgrounds

 $H(m,\mu,\sigma,\lambda,\zeta,\beta,a_1,n_1,a_2,n_2) \propto$

$$\begin{cases} h(m,\mu,\sigma,\lambda,\zeta,\beta), & \text{if } \frac{m-\mu}{\sigma} > -a_1 \text{ or } \frac{m-\mu}{\sigma} < a_2, \\ \frac{h(\mu-a_1\sigma,\mu,\sigma,\lambda,\zeta,\beta)}{\left(1-m/\left(n\frac{h(\mu-a_1\sigma,\mu,\sigma,\lambda,\zeta,\beta)}{h'(\mu-a_1\sigma,\mu,\sigma,\lambda,\zeta,\beta)} - a_1\sigma\right)\right)^{n_1}}, & \text{if } \frac{m-\mu}{\sigma} \leq -a_1, \\ \frac{h(\mu-a_2\sigma,\mu,\sigma,\lambda,\zeta,\beta)}{\left(1-m/\left(n\frac{h(\mu-a_2\sigma,\mu,\sigma,\lambda,\zeta,\beta)}{h'(\mu-a_2\sigma,\mu,\sigma,\lambda,\zeta,\beta)} - a_2\sigma\right)\right)^{n_2}}, & \text{if } \frac{m-\mu}{\sigma} \geq a_2. \end{cases}$$

Backgrounds

10

LHCb simulation

5400

 $m(D_{\pi^+}) [MeV/c^2]$

 χ^2 /ndof=0.82

5600

Fit the invariant mass distribution $m(D\pi)$

- Data: 2015, 2016, 2017, 2018
- Unbinned maximum likelihood fit implemented on URANIA LHCb package
- Signal: Hypatia plus Johnson
- Backgrounds:
 - Combinatorial: Double exponential
 - Decay backgrounds: Kernel estimation
- We measured $N_{B->D_{II}} = 741424 \pm 5157$

Conclusions and outlook

- During my project:
 - I defined the selection in order to filter the searched decays
 - I identified the background and I parameterized their shapes
 - $\circ~$ I developed the unbinned maximum likelihood fit in order to extract the $~B^0 \to D^-\pi^+$ $~B^0 \to D^+\pi^-$

- Next step:
 - Perform the mass invariant fit using the analytic shapes
 - Develop the time dependent studies

Thanks for your attention.

13