TMVA SOFIE

Developing the Machine Learning Inference Engine

Sanjiban Sengupta
EP-SFT

Supervisor: Lorenzo Moneta

/sanjibansg /sanjiban-sengupta
● Toolkit for Multivariate Analysis
● Provides a Machine Learning environment for training, testing and evaluation of multivariate methods.
SOFIE

Summer Student Presentations, 2022
SOFIE
System for
SOFIE
System for Optimized
SOFIE
System for Optimized Fast
TMVA SOFIE

SOFIE
System for Optimized Fast Inference
SOFIE
System for Optimized Fast Inference code Emit
SOFIE

System for Optimized Fast Inference code Emit

inference code, fast to operate, with least dependencies
- Intermediate representation following ONNX standards.
- Inference code generation with least latency and minimal dependency
- Intermediate representation following ONNX standards.
- Inference code generation with least latency and minimal dependency
- Intermediate representation following ONNX standards.
- Inference code generation with least latency and minimal dependency
- Intermediate representation following ONNX standards.
- Inference code generation with least latency and minimal dependency
- Intermediate representation following ONNX standards.
- Inference code generation with least latency and minimal dependency
Parser for translating an ONNX model to SOFIE's IR

```cpp
using namespace TMVA::Experimental::SOFIE;
RModelParser_ONNX parser;
RModel model = parser.Parse("model.onnx");
```
Parser for translating an ONNX model to SOFIE's IR

```cpp
using namespace TMVA::Experimental::SOFIE;
RModelParser_ONNX parser;
RModel model = parser.Parse("model.onnx");
```

Parser for translating PyTorch (.pt) and Keras (.h5) models

```cpp
SOFIE::RModel model = SOFIE::PyTorch::Parse("PyTorchModel.pt");
SOFIE::RModel model = SOFIE::PyKeras::Parse("KerasModel.h5");
```
Parser for translating an ONNX model to SOFIE's IR

```cpp
using namespace TMVA::Experimental::SOFIE;
RModelParser_ONNX parser;
RModel model = parser.Parse("model.onnx");
```

Parser for translating PyTorch (.pt) and Keras (.h5) models

```cpp
SOFIE::RModel model = SOFIE::PyTorch::Parse("PyTorchModel.pt");
SOFIE::RModel model = SOFIE::PyKeras::Parse("KerasModel.h5");
```

Inference code generation

```cpp
// generate text code internally (with some options)
model.Generate();
// write output header file and data weight file
model.OutputGenerated();
```
namespace TMVA_SOFIE_Linear_event{

struct Session {

 Session(std::string filename = "") {
 if (filename.empty()) filename = "Linear_event.dat";
 std::ifstream f;
 f.open(filename);
 // read weight data file

 }

 std::vector<float> infer(float* tensor_input1) {

 // Gemm
 BLAS::sgemm(&op_0_transB, &op_0_transA, &op_0_n, &op_0_m, &op_0_k, &op_0_alpha,
 tensor_0weight, &op_0_ldb, tensor_input1, &op_0_lda, &op_0_beta, tensor_21, &op_0_n);

 // RELU
 for (int id = 0; id < 50; id++){
 tensor_22[id] = ((tensor_21[id] > 0) ? tensor_21[id] : 0);
 }

 BLAS::sgemm(&op_18_transB, &op_18_transA, &op_18_n, &op_18_m, &op_18_k, &op_18_alpha,
 tensor_1weight, &op_18_ldb, tensor_38, &op_18_lda, &op_18_beta, tensor_39, &op_18_n);

 // return output
 std::vector<float> ret (tensor_39, tensor_39 + 10);
 return ret;
 }

};
}
● Extending support of SOFIE Keras parser
Project Objectives

- Extending support of SOFIE Keras parser
- Implement SOFIE Custom operator support
Project Objectives

- Extending support of SOFIE Keras parser
- Implement SOFIE Custom operator support
- Implement support for parsing Graph Neural Networks in SOFIE
- No native support for ONNX translation
- No native support for ONNX translation
- TF2ONNX may convert a Keras .h5 model to ONNX
No native support for ONNX translation
TF2ONNX may convert a Keras .h5 model to ONNX
SOFIE Keras Parser!
 - simpler to use
 - no need for input spec
 - built on latest opset
- No native support for ONNX translation
- TF2ONNX may convert a Keras .h5 model to ONNX
- **SOFIE Keras Parser!**
 - simpler to use
 - no need for input spec
 - built on latest opset

```c++
auto model = TMVA::Experimental::SOFIE::PyKeras::Parse("trained_model_dense.h5");
```
Algorithm for Parser

1. Load Model
2. Extract Information about Operators
3. Extract weight (initialized tensors)
4. Extract Input tensor info (Name, shape, datatype)
5. Extract Output Tensor Info
6. Return RModel object
Current Support

<table>
<thead>
<tr>
<th>Keras Layer</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dense</td>
<td>Implemented & Integrated</td>
</tr>
<tr>
<td>Permute</td>
<td>Implemented & Integrated</td>
</tr>
<tr>
<td>ReLU, Selu, Sigmoid</td>
<td>Implemented & Integrated</td>
</tr>
<tr>
<td>Batch Normalization</td>
<td>PR Merged</td>
</tr>
<tr>
<td>Convolution (2D)</td>
<td>PR Merged</td>
</tr>
<tr>
<td>Basic Binary Operators: Add, Subtract, Multiply</td>
<td>PR Under Review</td>
</tr>
<tr>
<td>Reshape</td>
<td>PR Under Review</td>
</tr>
<tr>
<td>Activations: Softmax, LeakyRelu, Tanh</td>
<td>PR Drafted</td>
</tr>
<tr>
<td>Concat</td>
<td>PR Drafted</td>
</tr>
</tbody>
</table>
● ONNX standards specifies 183 operators currently.
SOFIE Custom Operator

- ONNX standards specifies 183 operators currently.
- Need a custom user operator specification
● ONNX standards specifies 183 operators currently.
● Need a custom user operator specification
 ○ simple to define
ONNX standards specifies 183 operators currently.

Need a custom user operator specification
 ○ simple to define
 ○ easy to test, debug, and evaluate
ONNX standards specifies 183 operators currently.

Need a custom user operator specification
 ○ simple to define
 ○ easy to test, debug, and evaluate
 ○ few overheads and dependencies
Definition

- Define custom operator with the required attributes
 - Operator name
 - Input tensor names
 - Output tensor names
 - Output tensor shapes
 - Header file name
SOFIE Custom Operator

Definition

● Define custom operator with the required attributes
 ○ Operator name
 ○ Input tensor names
 ○ Output tensor names
 ○ Output tensor shapes
 ○ Header file name

● Define Compute function in Header file

- generate.hxx
- weights.dat
- compute.hxx
Definition

- Define custom operator with the required attributes
 - Operator name
 - Input tensor names
 - Output tensor names
 - Output tensor shapes
 - Header file name
- Define Compute function in Header file
Definition

● Define custom operator with the required attributes
 ○ Operator name
 ○ Input tensor names
 ○ Output tensor names
 ○ Output tensor shapes
 ○ Header file name

● Define Compute function in Header file

Interface

```cpp
std::unique_ptr<SOFIE::ROperator> op;
op.reset(new SOFIE::ROperator_Custom<float>("Exp", {"denseBiasAdd0"}, {"exp_out"}, {{1,4}}, 
  "exp_compute.hxx"));```

Summer Student Presentations, 2022
• High demands of Graph Neural Networks in High energy physics research
- High demands of Graph Neural Networks in High energy physics research
- CMS
● High demands of Graph Neural Networks in High energy physics research
● CMS
  ○ uses Particlenet; graph neural network supporting graph convolution, i.e. edge convolution and dynamic graph CNN methods
• High demands of Graph Neural Networks in High energy physics research
• CMS
  ○ uses Particlenet; graph neural network supporting graph convolution, i.e. edge convolution and dynamic graph CNN methods
  ○ applications in heavy flavour jet tagging, jet mass regression, etc.
● High demands of Graph Neural Networks in High energy physics research
● CMS
  ○ uses Particlenet; graph neural network supporting graph convolution, i.e. edge convolution and dynamic graph CNN methods
  ○ applications in heavy flavour jet tagging, jet mass regression, etc.
● LHCb
• High demands of Graph Neural Networks in High energy physics research
• CMS
  ○ uses Particlenet; graph neural network supporting graph convolution, i.e. edge convolution and dynamic graph CNN methods
  ○ applications in heavy flavour jet tagging, jet mass regression, etc.
• LHCb
  ○ uses DeepMind’s Graph Nets library; builds GNN on top of Tensorflow & Sonnet
Future Plan

- Finishing implementation & integration of Graph Neural Network support in SOFIE
Future Plan

● Finishing implementation & integration of Graph Neural Network support in SOFIE
● Integrating support for inference of BDT models in TMVA
● Finishing implementation & integration of Graph Neural Network support in SOFIE
● Integrating support for inference of BDT models in TMVA
  ○ Parser & Inference engine already built; requires a translation bridge.
Future Plan

- Finishing implementation & integration of Graph Neural Network support in SOFIE
- Integrating support for inference of BDT models in TMVA
  - Parser & Inference engine already built; requires a translation bridge.
- Implementing support for new operators in TMVA SOFIE
● Link to Forked Repository
   github.com/sanjibansg/root

● Link to SOFIE in current ROOT master
   github.com/root-project/root/tree/master/tmva/sofie

● Link to TMVA/SOFIE tutorials
   root.cern.ch/doc/master/group__tutorial__tmva.html

● Link to SOFIE notebooks
   github.com/lmoneta/tmva-tutorial/tree/master/sofie