Neutrino-Nucleus interaction cross section analysis with DUNE-PRISM

Amir Gruber, Tel Aviv University (amirgruber@gmail.com)

Supervisors: Dr Stephen Dolan and Dr Cristóvão Vilela
CERN Summer Student Programme 2022 - Student Sessions
05.08.2022
DUNE – Deep Underground Neutrino Experiment

• Designed to measure neutrino oscillation – the probability to measure each neutrino flavor varies when a neutrino propagates through space

• Comprised of LArTPC detectors, capable of measuring charged particle kinematics to high precision

Neutrino oscillations – a reminder:

\[P_{\alpha \rightarrow \beta} (E, L) \approx \sin^2 (2\theta) \sin^2 \left(\frac{\Delta m^2 L}{4E} \right) \]
DUNE-PRISM: a detector on tracks

- Part of the DUNE near detector
- Movable detector that will collect measurements at different positions with respect to the DUNE neutrino beam (LBNF)
- Different detector positions → Different flux distributions $\Phi_i(E_\nu)$

- Virtual fluxes can be produced by adding fluxes - $\Phi_{\text{virtual}} = \sum_i c_i \Phi_i$
Motivation for cross section measurements for DUNE

• In oscillation analyses,
 \[N_{pred}(E_{\nu}^{true}) \propto \sigma(E_{\nu}^{true}) \Phi(E_{\nu}^{true}) P(\alpha \to \beta, E_{\nu}^{true}) \]

• \(\frac{d\sigma}{d\omega} (\omega) \) (*) can tell us a lot about nuclear properties and structure:

\[\omega = E_{\nu} - E_{\text{lepton}} \] - Transfer energy of the interaction

• Similar Final states make different nuclear processes hard to separate from one another

(*) \(\omega = E_{\nu} - E_{\text{lepton}} \) - Transfer energy of the interaction
Cross section measurements for DUNE

- Naïve approach for reconstructing ω – using a single off-axis flux assuming:
 - $\Phi(E_\nu) \to \delta(E_\nu - E) \Rightarrow$ Incoming flux very (very!) different from monochromatic
 - $\sigma(E_\nu) \approx$ constant $\Rightarrow \sigma(E_\nu) \neq$ constant over smeared distributions, no simple way to $\Phi \to N$

 ![True vs Reconstructed ω for off-axis flux peaked at 1 GeV](image)

- No simple way to compare simulation to data (without σ, which we're trying to measure!)

 Result: Impossible to resolve different interaction features
Virtual flux recipe

- **Ingredients:**
 - **Flux matrix** F - an estimation of what flux distribution we will get for each off-axis angle
 - **Target flux** \overrightarrow{T} – a flux distribution we would like to approximate

- **Directions:**
 - **Solve** $F\overrightarrow{c} = \overrightarrow{T}$ - find a solution such that will give an approximation of our target as a linear combination of fluxes
Virtual flux recipe

Ingredients:
- **Flux matrix** F - an estimation of what flux distribution we will get for each off-axis angle
- **Target flux** \mathbf{T} – a flux distribution we would like to approximate

Directions:
- **Solve** $F\mathbf{c} = \mathbf{T}$ - find a solution such that will give an approximation of our target as a linear combination of fluxes
Virtual flux → Virtual event rate

- Relative statistical uncertainty in each virtual flux bin depends on event statistics and the chosen coefficients:

$$\sigma_{stat,j} = \sqrt{\sum_i c_i^2 N_{ij}} / \sum_i c_i N_{ij}$$

- Example - Large negative coefficients have a strong impact on σ_{stat}
- Idea – penalize solutions with large coefficients
Applying regularization methods

Ordinary least squares
\[\mu = 750 \text{ MeV} \]
\[\sigma = 71 \text{ MeV} \]

Tikhonov regularization (Ridge regression) with \(\alpha = 10^{-12} \)
\[\mu = 750 \text{ MeV} \]
\[\sigma = 78 \text{ MeV} \]
Preliminary cross section analysis

- Visible improvement over measurement with single flux
- Main features reconstructed – separated QE and RES peaks
- Caveat - many years of data needed; could be further optimized

![Graphs showing true vs reconstructed cross sections and virtual flux distributions with 20 years of data uncertainty]
Conclusions

• Main features of different Neutrino-nucleus processes as a function of ω could be reconstructed with DUNE-PRISM

• High statistics are needed – at least 10 years of DUNE-PRISM data

What’s Next?

• Model testing – checking if we can resolve changes in features between models

• Unfolding/Deconvolution – Going from ω_{reco} to ω_{true} using the known smearing function

• Nuclear spectral function analysis – using outgoing nucleon kinematics

• Independent fluxes - producing multiple independent flux production to minimize correlations (using regularizations that minimize the number of non-zero coefficients)
Thank you!
Backup