Time-of-Flight resolved neutron imaging from thermal to fast neutron energies at $n_{-}TOF EAR2$

June 20, 2022

M. Bacak¹, O. Aberle¹, M. Calviani¹, E. Chiaveri², C. Guerrero^{3,4}, E. Lehmann⁵, M. A. Millán-Callado^{3,4}, J. A. Pavón-Rodríguez^{1,3} and the n₋TOF Collaboration⁶

¹European Organization for Nuclear Research (CERN), Switzerland
²University of Manchester, United Kingdom
³Universidad de Sevilla, Spain
⁴Centro Nacional de Aceleradores (CSIC-US-Junta de Andalucía), Sevilla, Spain.
⁵Paul Scherrer Institut (PSI), Lab. Neutron Scattering & Imaging, Switzerland
⁶www.cern.ch/n_TOF

Spokesperson: M. Bacak (michael.bacak@cern.ch) Technical coordinator: O. Aberle (oliver.aberle@cern.ch)

INTC-P-630

Neutron Imaging (NI) – a versatile tool

- Non-destructive inspection method complementary to X-rays
- Plethora of applications (few examples):
 - Energy research fuel cells, batteries, catalysis, nuclear energy materials
 - Engineering materials strains, stresses, textures and microstructures deep in metal components
 - Soft matter and biology externally triggered transitions in soft matter, water uptake in plants
 - Magnetism and condensed matter high density data storage materials, superconductivity
 - Archaeology, Palaeontology and Cultural heritage
 - Bulk material inspection (industrial application, slow dynamic processes)
- Most NI facilities provide a cold-thermal neutron spectrum epithermal and fast neutron imaging is still gaining momentum
 - Smaller facilities can fill niches and help to develop the techniques and methods

NI @ n_TOF (2015-2017)

Detection system from Photonic Science:

- ZnS/⁶LiF based neutron scintillator (100×100 mm², 100 μ m)
- Air-cooled SCMOS camera: 2k×2k @ $\frac{1}{2}$ inch \times $\frac{1}{2}$ inch
- Auto mode or beam triggered

Imaging @ n_TOF (2015-2017) – results

- Feasibility study:
 - 2015 small collimator
 - 2016 big collimator
- Measurement in 2017:
 - Irradiated AD target (programme under SPSC)
 - Irradiated HRMT-27 rods (programme under SPSC)

F. Mingrone et al., Instruments 2019, 3(2), 32

n_TOF n-imaging INTC-P-630 | 70th Meeting of the INTC

21/06/2022

Conclusions in 2018

- Neutron Imaging possible @ EAR2
- EAR2 not designed to be competitive with dedicated facilities (PSI, FRMII, ILL, ...) (yet)
 - EAR2 flux ~ 2x10⁶ n/cm²/s (> 10⁷ n/cm²/s @ PSI ICON/NEUTRA cold/thermal)
 - Spatial resolution (not fully characterized) collimation system optimized for XS measurements
 - Full characterization of EAR2 wrt NI pending

• ... but EAR2 features:

- Neutrons from thermal to 100s MeV
- No pulse overlap "all in one"
- Class A lab radioactive sample handling is straight forward (no external transport for CERN samples)

Kyle M. McCall et al., ACS Nano 2020, 14, 11, 14686–14697

State-of-the-art TOF Neutron Imaging

A. S. Losko et al., Sci Rep. 11, 21360 (2021): TOF cold NI setup @ BOA (PSI)

State-of-the-art TOF Neutron Imaging

A. S. Losko et al., Sci Rep. 12, 6648 (2022): fast TOF NI @ LANSCE

n_TOF n-imaging INTC-P-630 | 70th Meeting of the INTC

21/06/2022

Restarting & extending NI activities: Potential

New spallation target
 → higher neutron flux

B) Neutron event-based image at super resolution

- Developments in the imaging community:
 - Almost standardized and commercially available TOF cameras, i.e. <u>TPX3CAM</u> based on TimePix3 technology (1.6 ns time resolution, 500 MHz frame rate) → enables n/γ-discrimination
 - Novel fast neutron scintillators (<u>multilayer</u>, <u>ZnS:Cu</u> or <u>semiconductor nanocrystals/Cu-perovskites</u>)

A. S. Losko et al., Sci Rep. 11, 21360 (2021)

- Finalize the characterization of n_TOF EAR2:
 - Flux & Profile: full field of view
 - Spatial resolution (Siemens stars, step wedges) over TOF

n_TOF n-imaging INTC-P-630 | 70th Meeting of the INTC

- Finalize the characterization of n_TOF EAR2:
 - Flux & Profile: full field of view
 - Spatial resolution (Siemens stars, step wedges) over TOF
- Beam profile at different flight paths
 - Slow and fast neutrons follow a slightly different path (energy dependent BIF & position dependent RF)

- Finalize the characterization of n_TOF EAR2:
 - Flux & Profile: full field of view
 - Spatial resolution (Siemens stars, step wedges) over TOF

Beam profile at different flight paths

- Slow and fast neutrons follow a slightly different path (energy dependent BIF & position dependent RF)
- Scintillator characterization
 - Fast neutron scintillators
 - Characterization of efficiency, spatial resolution and light yield over the whole E_n range

Fast neutron imaging with colloidal NCs

Kyle M. McCall et al., ACS Nano 2020, 14, 11, 14686–14697

- Finalize the characterization of n_TOF EAR2:
 - Flux & Profile: full field of view
 - Spatial resolution (Siemens stars, step wedges) over TOF

• Beam profile at different flight paths

 Slow and fast neutrons follow a slightly different path (energy dependent BIF & position dependent RF)

Scintillator characterization

- Fast neutron scintillators
- Characterization of efficiency, spatial resolution and light yield over the whole E_n range
- Application to CERN equipment:
 - Irradiated AD target (successful swap 16-17th May) and Pb sample irradiated at HiRadMat

Conclusions & proton request

- Full Characterization and extension of the EAR2 NI potential with TOF imaging
- Aiming to provide:
 - Information for n_TOF (energy resolved, full beam profile measurements neutrons and γ -rays)
 - Characterization of fast & slow neutron and γ -ray scintillators over a wide energy range
 - Application to samples relevant to CERN
- Interested collaborateurs from 3 other NI facilities (PSI, FRM-II, CNA)

Requested protons: **1.4**×**10**¹⁸ Experimental Area: **EAR2**

Thank you for your attention

Michael Bacak michael.bacak@cern.ch

• Finalize the characterization of n_TOF EAR2:

- Flux & Profile: full field of view & different flight paths
- Spatial resolution (Siemens stars, step wedges) over TOF
- Beam profile at different flight paths
 - Slow and fast neutrons follow a slightly different path (energy dependent BIF & position dependent RF)

- Finalize the characterization of n_TOF EAR2:
 - Flux & Profile: full field of view
 - Spatial resolution (Siemens stars, step wedges) over TOF

• Beam profile at different flight paths

• Slow and fast neutrons follow a slightly different path (energy dependent BIF & position dependent RF)

n_TOF n-imaging INTC-P-630 | 70th Meeting of the INTC

18.75 m, E_<1 eV

CU

-2

-3

< 1 eV

-2

-1

0

0.0025

0.002

0.0015

0.001

0.0005

0.005

2

3

4