

Collinear resonance ionization spectroscopy of chromium isotopes between N = 28 and N = 40

Louis Lalanne, Ágota Koszorús and the CRIS collaboration

INTC Meeting

22/06/2022

Introduction

Shell evolution between Ca and Ni:

- Sub-shell closure at N=32 around ${}^{52}Ca$
- Sign for a weak sub-shell closure at N=40 in ⁶⁸Ni
- N=40 Island of Inversion (IoI) around ⁶⁴Cr

Introduction

Shell evolution between Ca and Ni:

- Sub-shell closure at N=32 around ${}^{52}Ca$
- Sign for a weak sub-shell closure at N=40 in ⁶⁸Ni
- N=40 Island of Inversion (IoI) around ⁶⁴Cr

The Cr isotopes:

- Half filled $f_{7/2} \rightarrow$ strongest *p*-*n* collectivity
- Highest Z for which a sign of N=32 is observed
- Fast increase of collectivity and deformation from N=32 onward
- 64 Cr is the predicted center of the *N*=40 IoI

Introduction

Shell evolution between Ca and Ni:

- Sub-shell closure at N=32 around ${}^{52}Ca$
- Sign for a weak sub-shell closure at N=40 in ⁶⁸Ni
- N=40 Island of Inversion (IoI) around ⁶⁴Cr

The Cr isotopes:

- Half filled $f_{7/2} \rightarrow$ strongest *p*-*n* collectivity
- Highest Z for which a sign of N=32 is observed
- Fast increase of collectivity and deformation from N=32 onward
- 64 Cr is the predicted center of the *N*=40 IoI

Drastic structural changes observed, driven by a complex interplay of single particle and collective behaviors that poses challenges to indirect methods and to nuclear theories

 \rightarrow Need detail study of *g.s.* spins, moments and radii

Spins and Moments of odd-A Cr

Spins and Moments of odd-A Cr

Spins of odd-A Cr isotopes:

- No *g.s.* spin firmly assigned beyond *N*=32
- High density of low-lying states makes spin assignment very challenging for indirect method and for nuclear theory

S. Suchyta et al., Phys. Rev. C 89, 034317 (2014)

Spins and Moments of odd-A Cr

Spins of odd-A Cr isotopes:

- No g.s. spin firmly assigned beyond N=32
- High density of low-lying states makes spin assignment very challenging for indirect method and for nuclear theory

Moments of odd-A Cr isotopes :

- No moments known outside stability
- *g.s.* wf is expected to be very mixed
- Transition from spherical to deformed
- \rightarrow Very challenging case for nuclear theory

S. Suchyta et al., Phys. Rev. C 89, 034317 (2014)

Steep increase beyond *N*=28:

- Intriguing Z independent behavior
- Lack of data beyond N=32 for even Z isotopes
- Cr has the highest level of collectivity
- \rightarrow Best candidate to observe a faster increase

Steep increase beyond *N*=28:

- Intriguing Z independent behavior
- Lack of data beyond N=32 for even Z isotopes
- Cr has the highest level of collectivity
- \rightarrow Best candidate to observe a faster increase

Comparison to theory:

- Z independency investigated by theory
- Discrepancy btw state-of-the-art ab-initio CC and Fayans DFT
- \rightarrow Theory calls for Cr data

Steep increase beyond *N*=28:

- Intriguing Z independent behavior
- Lack of data beyond N=32 for even Z isotopes
- Cr has the highest level of collectivity
- \rightarrow Best candidate to observe a faster increase

Comparison to theory:

- Z independency investigated by theory
- Discrepancy btw state-of-the-art ab-initio CC and Fayans DFT
- \rightarrow Theory calls for Cr data

Effect of shape transition on charge radii:

- Shape transition from spherical to prolate around ⁵⁸Cr
- Sign of triaxiality in Mn⁽¹⁾
- \rightarrow Large irregularities are expected in the Cr charge radii

K. Sato et al., Phys. Rev. C 86, 024316 (2012)

(1) H. Heylen et al., Phys. Rev. C 94, 054321 (2016)

The CRIS experiment

-1000

-500

0 Frequency (MHz) 500

1000

1500

-1500

Cr Beam :

- UCx + RILIS: yields from ISOLTRAP⁽¹⁾
- > 10^4 pps up to 60 Cr
- Measurement feasible up to ⁶³Cr
- ⁽¹⁾M. Mougeot *et al.*, Phys. Rev. L 120, 232501 (2018)

Isotope	N	Yields $UC_x + RILIS$ [ions/s]	Half-life	shifts			
$^{50-59}\mathrm{Cr}$	26 - 35	$> 10^{5}$	$>1 \mathrm{s}$	3.8			
$^{60}\mathrm{Cr}$	36	2×10^4	$490(10) { m ms}$	0.2			
$^{61}\mathrm{Cr}$	37	2×10^3	243(9) ms	1			
^{62}Cr	38	$3 imes 10^2$	$206(12) { m ms}$	2			
$^{63}\mathrm{Cr}$	39	3×10^1	$129(2) { m ms}$	8			
$^{52,53}\mathrm{Cr}$		Reference isotopes		3			
Stable		Optimization of the experimental set-up					
Total :				20			

Shift request :

- Re-measurement of ⁵⁰⁻⁵⁴Cr for field-mass shift factor calibration and benchmark meas. for moments
- Yields for ${}^{50-60}Cr > 10^4 \text{ pps} \rightarrow 4 \text{ shifts}$
- 52 K: yield ~ 300 pps, T ~ 110 ms, 3 shifts
- Regular Ref. measurement on ^{52,53}Cr to monitor drifts

TAC comments: The TAC does not foresee any serious issues with this proposal.

Conclusion

This proposal : Laser spectroscopy of ${}^{50-63}$ Cr (Z = 24, N = 26 - 39)

Scientific goals:

- g.s spin indispensable to construct reliable level schemes
 → First firm spin assignment of the g.s. of the odd-A isotopes
- Determine *g.s.* wf composition, map the *N*=40 IoI and provide stringent test for nuclear theories
 - \rightarrow First measurement of nuclear moments
- Investigate the various structural changes and compare to state-ofthe-art *ab-initio* and DFT calculations
 - \rightarrow First measurement of charge radii

Method:

Collinear resonance ionization spectroscopy at

Requested shifts:

• 2+18 shifts on a UCx target + RILIS

THANK YOU FOR YOUR ATTENTION

Ionization Scheme

- Offline work for eff. test and eventually AI search
- β-tagging setup with tape

⁽¹⁾M. Mougeot *et al.*, Phys. Rev. L 120, 232501 (2018) ⁽²⁾T. Day Goodrace *et al.*, Spec. Acta B 129, 58-63 (2017)

⁽³⁾ W. Ertmer et al. Z. Phys. A **309** 1 (1982)

(4) T. Reinhardt et al., Z. Phys. D 34, 87-90 (1995)

The N=40 Island of Inversion

Neutron effective single-particle energies obtained with (a) the LNPS interaction at N = 40

S. M. Lenzi et al., Phys. Rev. C, vol. 82, p. 054301 (2010)

The intruder contribution of the calculated ground-state wave function for the elements Ca (Z=20) through Ni(Z=28), computed by the VS-IMSRG(2) within the proton *pf* neutron *pf*- $g_{9/2}$ valence space.

R.Silwal et al., arXiv:2204.09566v1 (2022)

Contaminants

$T_{1/2}$										
148Pr / Z# 🔍 🔍	60Ni TABLE 5 6.223%	61Ni STABLE 1.1399%	62Ni STABLE 3.6346%	63Ni 101.2 y β ⁻ = 100.00%	64Ni STABLE 0.9255%	65Ni 2.5175 h β ⁻ = 100.00%	66Ni 54.6 h β ⁻ = 100.00%	67Ni 21 s β ⁻ = 100.00%		
58Co 70.86 d ε = 100.00%	59Co STABLE 100%	60Co 1925.28 d β ⁻ = 100.00%	61Co 1.649 h β ⁻ = 100.00%	62Co 1.50 m β ⁻ = 100.00%	63Co 27.4 s β ⁻ = 100.00%	64Co 0.30 s β ⁻ = 100.00%	65Co 1.16 s β ⁻ = 100.00%	66Co 209 ms β ⁻ = 100.00% β ⁻ n ?		
57Fe STABLE 2.119%	58Fe STABLE 0.282%	59Fe 44.495 d β ⁻ = 100.00%	60Fe 2.62E+6 y β ⁻ = 100.00%	61Fe 5.98 m β ⁻ = 100.00%	62Fe 68 s β ⁻ = 100.00%	63Fe 6.1 s β ⁻ = 100.00%	64Fe 2.0 s β ⁻ = 100.00%	65Fe 810 ms β ⁻ = 100.00% β ⁻ n ?		
56Mn 2.5789 h β ⁻ = 100.00%	57Mn 85.4 s β ⁻ = 100.00%	58Mn 3.0 s β ⁻ = 100.00%	59Mn 4.59 s β ⁻ = 100.00%	60Mn 0.28 s β ⁻ = 100.00%	61Mn 709 ms β ⁻ = 100.00% β ⁻ n ?	62Mn 92 ms β ⁻ = 100.00% β ⁻ n ?	63Mn 276 ms β ⁻ = 100.00% β ⁻ n ?	64Mn 90 ms β⁻ = 100.00% β⁻n = 2.00%		
55Cr 3.497 m β⁻ = 100.00%	56Cr 5.94 m β⁻ = 100.00%	57Cr 21.1 s β ⁻ = 100.00%	58Cr 7.0 s β⁻ = 100.00%	59Cr 1.05 s β⁻ = 100.00%	60Cr 492 ms β ⁻ = 100.00% β ⁻ n ?	61Cr 234 ms β ⁻ = 100.00% β ⁻ n ?	62Cr 200 ms β ⁻ = 100.00% β ⁻ n ?	63Cr 129 ms β ⁻ = 100.00% β ⁻ n ?		

TiO and CaF contaminant from mass 59 to 63 → Beta taging setup to remove stable contaminants