Spectroscopy of n-rich Cd isotopes via (*d*,*p*) reactions

CERN-INTC-2022

J. BENITO

DIPARTIMENTO DI FISICA AND INFN, SEZIONE DI PADOVA, PADOVA, ITALY

UNIVERSIDAD COMPLUTENSE DE MADRID, MADRID, SPAIN

Motivation: Study of single-particle properties

Transfer reactions are ideal probe of SP properties.

- Single particle energies
- Angular momentum of the states.
- Spectroscopic factors.

(*d*,*p*) studies in direct kinematics has been performed all over the Te isotopic chain.

The Sn chain has been studied (*d*,*p*) studies using inverse kinematics.

Information from transfer reactions in Cd isotopes is still missing. ISOLDE-ISS can complete this information.

(*d*,*p*) reactions studies in the tin chain

(d,p) reactions studies show an strong contribution of the fp Shell above N=82.

Neutron orbitals below N=82 become availbe for lower masses.

(*d*,*p*) reactions studies in the telurium chain

(d,p) reactions studies show an strong contribution of the fp Shell above N=82.

Neutron orbitals below N=82 become availbe for lower masses.

 $\begin{array}{c} 3s_{1/2} \\ 1h_{11/2} \\ 2d_{3/2} \\ 2d_{5/2} \\ 1g_{7/2} \end{array}$

 $1g_{9/2} \\ 2p_{1/2} \\ 2p_{3/2}$

 $lf_{5/2}$

SCH

Systematics of Cd isotopes

- Experimental information in this region is mostly extracted from fission experiments and beta-decay meassurements up to A=125.
- No experimental information of *fp* configurations above N=82.
- Shell model calculations predict three low-lying states corresponding to the 3vs_{1/2}, 1vh_{11/2} & 2vd_{3/2} configurations.

¹²⁵Cd 500 500 ¹²³Cd EXP SM EXP SM 400 400 Excitation energy (keV) $(1/2^{+})$ 300 300 200 200 (11/2) (11/2⁻ (1/2⁺ 100 100 0 (3/2+) 0 (3/2+ 0.4 0.6 0.8 0.4 0.6 0.8 0.2 0.2 Specctroscopic factor Specctroscopic factor

GOALS of this proposal

- Meassurement of ¹²²Cd(*d*,*p*) and ¹²⁴Cd(*d*,*p*)
- Fragmentation of single particle strenght.
- Transfered angular momentun
- Spectroscopic factors
- First identification of the *fp* strength in Cd.

ISOLDE Solenoidal Spectrometer set up

- Use of the standard setup with a Si array detector
- 2 T Magnetic field
- Array-to-target distance of 7.5 cm
- $100 \,\mu\text{g/cm}^2 \,\text{CD}_2 \,\text{target}.$
- Silicon detector at forward position for elastic scattered deuterons.
- Beam energy of 7.5 MeV/u.

- Angular coverage from 10 to 45 degrees.
- Energy range from 0 to 5 MeV.
- Energy resolution ~140 keV

Realistic simulations and DWBA calculations

Spectroscopic factors can be extracted for the three states.

Realistic simulations and DWBA calculations

Expected yields and beam time request

Reaction/	Intensity at	Config.	J^{π}	Energy	S	Δl	σ	Proton counts	Total number of
target	ISS (pps)			(MeV)			(mb)	per shift	events
		$2d_{3/2}$	$3/2^+$	0	0.4	2	3.2	700	2060
$^{122}\mathrm{Cd}(d,p)^{123}\mathrm{Cd}$	$1.0 \mathrm{x} 10^{6}$	$3s_{1/2}$	$1/2^{+}$	0.116[2]	0.25	0	1.8	392	1176
at 7.5 MeV/u		$1h_{11/2}$	$11/2^{-}$	0.144[19]	0.25	5	0.8	170	504
on 100 $\mu g/cm^2$		$2f_{7/2}$	$7/2^{-}$	~ 2.6	0.1	3	1.3	270	810
3 shifts		$3p_{3/2}$	$3/2^{-}$	~ 3.4	0.1	1	0.17	36	107
S shirts		$3p_{1/2}$	$1/2^{-}$	~ 3.9	0.1	1	0.03	7	21
		$2f_{5/2}$	$5/2^{-}$	~ 4.5	0.1	3	0.13	28	84
		$2d_{3/2}$	$3/2^{+}$	0	0.35	2	2.8	140	2502
$^{124}\mathrm{Cd}(d,p)^{125}\mathrm{Cd}$	$2.3 x 10^5$	$3s_{1/2}$	$1/2^{-}$	0.353 [3]	0.2	0	1.2	60	1073
at 7.5 MeV/u		$1h_{11/2}$	$11/2^{-}$	0.188 [3]	0.2	5	0.6	31	558
on 100 $\mu g/cm^2$		$2f_{7/2}$	$7/2^{-}$	~ 2.6	0.1	3	0.9	46	834
		$3p_{3/2}$	$3/2^{-}$	~ 3.4	0.1	1	0.3	13	275
18 shifts		$3p_{1/2}$	$1/2^{-}$	~ 3.9	0.1	1	0.05	2	52
		$2f_{5/2}$	$5/2^{-}$	~ 4.5	0.1	3	0.1	5	102

$\Box UC_2$ /graphite target

Neutron converter (To remove the proton-rich contaminants)
 Quartz transfer line (Removal of In and Cs contamination)
 RILIS

TAC feedback and response

"The TAC notes that the yields in the proposal have been over estimated. Is the experiment still feasible? 124Cd in particular may not be considering these rates"

Re	eaction/	Intensity at	ity at Config.		Energy		S	Δl	σ	Proton counts Tota	
t	target	ISS (pps)	SS (pps)		(MeV)				(mb)	per shift	
			$2d_{3/2}$	$3/2^+$		0	0.4	2	3.2	700	
^{122}Cd	$(d,p)^{123}$ Cd $1.0x10^6$		$3s_{1/2}$	$1/2^+$	0.	116[2]	0.25	0	1.8	392	
at 7.	$.5 \ MeV/u$		$1h_{11/2}$	$11/2^{-}$	0.144[19]		0.25	5	0.8	170	
on 100 $\mu g/cm^2$ 3 shifts					Proposal TAC		prediction		Estimation from IS685		
¹²² Cd at 7 on 1 ¹²⁴ Cd		Yields	Yields (uC ⁻¹) ISS (pps) Yields (uC ⁻¹)		1.7E+07		2.3E+06			1.2E+07	
		ISS			9.90E+05 1.		.00E+05		5.00E+05		
		Yields			4.0E+06		2.5E+05			1.0E+06	
		ISS	ISS (pps)		2.30E+05		9.00E+03		4.00E+04		
_	,,		$3p_{3/2}$	$3/2^{-}$	-	~ 3.4	0.1	1	0.3	13	
18 shifts			$3p_{1/2}$	$1/2^{-}$	~	~ 3.9	0.1	1	0.05	2	
L			$2f_{5/2}$	$5/2^{-}$	-	$\sim\!\!4.5$	0.1	3	0.1	5	

□ UC₂/graphite target

- □ Neutron converter (To remove the proton-rich contaminants)
- **Quartz transfer line (Removal of In and Cs contamination)**

events	er of						
2060							
1176							
504	Recent measurement IS685						
810	Recent measurement 15085						
107	experiment.						
21	Higher yields achieved using						
84	the same configurations.						
2502	(Private communication from						
1073	(M Fraile)						
558							
834							
275							
52	worter will						
102	the neutron converte.						
Removing the helds.							
increase notably the removed by qualtz							
	ntamination						

line.

Spectroscopy of neutron-rich ^{122,124}Cd isotopes via d,p reactions

May 11, 2022

J. Benito¹, P. Aguilera¹, S. Carollo¹, R. Escudeiro¹, S.M. Lenzi¹, R. Menegazzo¹,
D. Mengoni¹, S. Pigliapoco¹, F. Recchia¹, K. Rezynkina¹, G. Zhang¹, G. de Angelis²,
M. Balogh², D. Brugnara², A. Ertoprak², F. Galtarossa², A. Goasduff², B. Gongora²,
A. Gottardo², D.R. Napoli², J. Pellumaj², R.M. Pérez-Vidal², M.Sedlák²,
J.J. Valiente-Dobón², L. Zago², I. Zanon², P. Butler³, S. Freeman⁴, L.P. Gaffney³,
M. Labiche⁵, I. Lazarus⁵, R. Page³, R. Raabe⁶, D.K. Sharp⁴, J. Ojala³, L.M. Fraile⁷, B. Olaizola⁸

¹Dipartimento di Fisica and INFN, Sezione di Padova, Padova, Italy
²INFN, Laboratori Nazionali di Legnaro, Legnaro, Italy
³Oliver Lodge Laboratory, University of Liverpool, Liverpool, L69 7ZE, UK
⁴School of Physics and Astronomy, The University of Manchester, Manchester, M13 9PL, UK
⁵STFC Daresbury Laboratory, Daresbury, Warrington, WA4 4AD, UK
⁶KU Leuven, Instituut voor Kern- en Stralingsfysica, 3001 Leuven, Belgium
⁷Grupo de Física Nuclear & IPARCOS, Universidad Complutense de Madrid, Spain
⁸ISOLDE, EP Department, CERN, CH-1211 Geneva, Switzerland.

Spokesperson: J. Benito (jaime.benito@pd.infn.it) Contact person: B. Olaizola (bruno.olaizola@cern.ch)