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Introduction
■ Briefly explain recent applications of ML to analyses at Super-Kamiokande 

(SK) and perhaps give a few words about future prospects


■ In general, SK has relied on zeroth-generation (?) techniques for separation of 
signals and backgrounds 

■ Primarily TMVA-based neural networks, single-classifier problems


■ Some exploration of other models, but no public results yet

■ In principle particle identification and kinematic reconstruction can also be 

done with ML 

■ C.F. WatChMaL.org 


■ Topics

■ Tau Neutrino Appearance [~GeV]

■ Neutron Tagging [~MeV ] 

■ Multi-Ring event classification 

■ Boosted Dark Matter  [~GeV]

■ Nucleon Decay Searches [~GeV]


http://WatChMaL.org


Super-Kamiokande:

■ 22.5 kton fiducial volume

■ Optically separated into 


■ Inner Detector 11,146 20” PMTs

■ Outer Detector 1885 8” PMTs


■ No net electric or magnetic fields 

■ Excellent PID  between showering (e-like) and 
non-showering (µ-like) 


■ PMT hit pattern, timing, charges  

■ < 1% MIS ID at 1 GeV


■ Multipurpose physics

→

Four Run Periods:

SK-I   (1996-2001)    SK-II   (2003-2005)

SK-III (2005-2008)   SK-IV (2008-2018)

SK-V (2019-2020)     SK-VI (2020-2022) [0.01% Gd] 


Upgrade Complete Now operating as (SK-Gd)  
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The Fundamental Problem :  E > 100 MeV

■ No (3+1)-dimensional track information 

■ All particle parameters estimated from (2+1) projection of (3+1) info.


■ Overlapping particles confuse the reconstruction algorithm

■ When energy deposition is small, competition between signal hits and noise 

Outer detector

l±
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The Fundamental Problem :  E < 100 MeV
Reconstructed electron ring

Noise hits 

■ No (3+1)-dimensional track information 

■ All particle parameters estimated from (2+1) projection of (3+1) info.


■ Overlapping particles confuse the reconstruction algorithm

■ When energy deposition is small, competition between signal hits and noise 



Searching for ντ : Prototypical ML
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■ Direct signal of atmospheric neutrino oscillation 

■ Large background for neutrino mass-hierarchy search 

■  Complicated event topologies with many overlapping charged particles 

■  Backgrounds  DIS similar (but more forward) topology 

→
→ νμ,e

CC ντ  
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Search for Tau Neutrinos at SK: Selection

■ Pre-selection 

■ Fully-Contained 

■ Fiducial Volume (22.5kton)

■ Visible Energy > 1330.0 MeV 


■ Seven Neural Network Variables 

■ Log10 (Visible Energy) 

■ Particle ID Likelihood

■ Number of Decay Electrons 

■ Distance to farthest electron

■ Event sphericity 

■ Number of Ring Candidates 

■ Fraction of momentum in 

leading ring 


■ Difficult to fully reconstruct all particles, so count ring pieces

■ Typically τ decay produces more pions above C threshold


■ Good problem for pattern recognition, CNN

Reconstruction result 
shown as 

cyan circles  

CC ντ  
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Search for Tau Neutrinos at SK: Selection

■ Pre-selection 

■ Fully-Contained 

■ Fiducial Volume (22.5kton)

■ Visible Energy > 1330.0 MeV 


■ Seven Neural Network Variables 

■ Log10 (Visible Energy) 

■ Particle ID Likelihood

■ Number of Decay Electrons 

■ Distance to farthest electron

■ Event sphericity 

■ Number of Ring Candidates 

■ Fraction of momentum in 

leading ring 


Recon struction 
result shown as 

cyan circles  

Included as ring candidates
νe, νµ

 ντ
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PHYS. REV. D 98, 052006 (2018)

Search for Tau Neutrinos at SK: Performance

ROOT TMVA

MLP

7 Node Input Layer

10 Node Hidden Layer

1 Node Output

Mean Square Estimator

Back Propagation
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Search for Tau Neutrinos at SK: Performance

■ Neutral Current (NC), isotropic hits similar to signal　

■ With 1st-gen(+) ML: reconstruct  , better  separation?ρ770 μ, π, e, γ
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Search for Tau Neutrinos at SK :  

■ Fit 2-dimensional PDFs (cos θ, Neural Network ), while simultaneously 
varying systematic error templates 

■ No cut to separate tau-like and non-tau-like 


■ Uses 328 kton-yr exposure (1996-2018 data)  


α =  1.47±0.32   (stat+syst)


4.6σ rejection of no τ appearance  



+ 6 other Variables
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General Classification of Multi-Ring Events: BDT (Light GBM)

pT,tot /pleading

pleading /ptot

■ Separate atmospheric  sample into pieces with different sensitivity 

■  - Mass hierarchy,  ;  - atm. Mixing ; NC - background 


■ Like tau problem, hard to identify leading lepton among many rings 

■ Adopt BDT 


■ First multi-classifier at SK adopted in 2020 

■ Improved sensitivity and reduced training time (MLP:20min BDT:10s) 

ν
νe : ν̄e δCP νμ

→

Leading ring 

(Highest 
momentum) 
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General Classification of Multi-Ring Events: BDT (Light GBM)

% Signal Eff. Purity

45.8 46

62.4 32

84.4 91

NC+aa 44.2 54

Train Time 10 s 

1.1

νe − like

ν̄e − like

νμ − like

Signal Eff. Purity

34.4 46

60.4 24

77.0 93

55.6 44

0

BDT LLR

ντ

Δ (Δχ2
MO)

■ Separate atmospheric  sample into pieces with different sensitivity 

■  - Mass hierarchy,  ;  - atm. Mixing ; NC - background 


■ Like tau problem, hard to identify leading lepton among many rings 

■ Adopt BDT 


■ First multi-classifier at SK adopted in 2020 

■ Improved sensitivity and reduced training time (MLP:20min BDT:10s) 

ν
νe : ν̄e δCP νμ

→
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Neutron Tagging Integrated Event Display   with two 
neutrons (red hits) and dark noise (blue hits)

tν + [18,540]μs

Hits from 

Neutron2

■ Neutrons useful for 

■ Neutrino-antineutrino separation 

■ Reducing backgrounds to proton decay 

■ Tagging supernova relic neutrinos 

■ Capture on hydrogen produces 2.2 MeV gamma ~ 10 PMT hits 

■ Similar number expected from dark hits, but not along a Cherenkov ring


■ BG model taken directly from data (random trigger)

Hits from 

neutron 1
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Max PMT hits in 10ns

+ 21 other Variables

MLP

■ Successfully observe neutrons, but with low efficiency (26%) in pure water 

■ (N.B. in 0.01% Gd-loaded water ~ 40~50%)


■ NN is sensitive to changes in dark rate, water transparency, and  distance

■ Can these be improved with 1st-gen ML? 

n − ν

Neutron Tagging
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Max PMT hits in 10ns

■ Successfully observe neutrons, but with low efficiency (26%) in pure water 

■ (N.B. in 0.01% Gd-loaded water ~ 40~50%)


■ NN is sensitive to changes in dark rate, water transparency, and  distance

■ Can these be improved with 1st-gen ML? 

n − ν

Neutron Tagging: BG Reduction PDK

MC Truth
MC Reco
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Other Applications 
Dinucleon Decay Search Search

■ R-Parity-violating mode

■  Predicts many particles and rings (K+ above C threshold) 


■ TMVA-based BDT 

■ 32 input variables , 500 trees 

■ Achieve 12.6% signal efficiency
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Summary and Conclusions 

■ So far SK has mostly adoped “0th-generation” ML for simple classification problems


■ Expect some improvement in performance using more modern algorithms and 
techniques 

■ Many problems lend them selves to image processing and pattern recognition 


■ Some effort towards Multiple-label classification problems implemented and kinematic 
estimation 


■ More advanced ML techniques likely to improve many aspects of the experiment 

■ …underway.




Supplements
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