スーパーカミオカンデ大気ニュートリノデータ解析におけるMLの利用

Roger Wendell Kyoto University ML@HEP 2022 2022.07.09

Introduction

- Briefly explain recent applications of ML to analyses at Super-Kamiokande (SK) and perhaps give a few words about future prospects
- In general, SK has relied on zeroth-generation (?) techniques for separation of signals and backgrounds
 - Primarily TMVA-based neural networks, single-classifier problems
- Some exploration of other models, but no public results yet
 - In principle particle identification and kinematic reconstruction can also be done with ML
 - C.F. WatChMaL.org
- Topics
 - Tau Neutrino Appearance [~GeV]
 - Neutron Tagging [~MeV]
 - Multi-Ring event classification
 - Boosted Dark Matter [~GeV]
 - Nucleon Decay Searches [~GeV]

Super-Kamiokande:

- 22.5 kton fiducial volume
- Optically separated into
 - Inner Detector 11,146 20" PMTs
 - Outer Detector 1885 8" PMTs
- No net electric or magnetic fields
- Excellent PID between showering (e-like) and non-showering (μ-like)
 - ■→PMT hit pattern, timing, charges
 - < 1% MIS ID at 1 GeV
- Multipurpose physics

Four Run Periods:

SK-I (1996-2001) SK-II (2003-2005)

SK-III (2005-2008) SK-IV (2008-2018)

SK-V (2019-2020) SK-VI (2020-2022) [0.01% Gd]

Upgrade Complete Now operating as (SK-Gd)

The Fundamental Problem : E > 100 MeV

- No (3+1)-dimensional track information
 - All particle parameters estimated from (2+1) projection of (3+1) info.
- Overlapping particles confuse the reconstruction algorithm
- When energy deposition is small, competition between signal hits and noise

The Fundamental Problem: E < 100 MeV

- No (3+1)-dimensional track information
 - All particle parameters estimated from (2+1) projection of (3+1) info.
- Overlapping particles confuse the reconstruction algorithm
- When energy deposition is small, competition between signal hits and noise

Searching for v_{τ} : Prototypical ML Hadronic Decay 3 Flavor P($\nu_{\mu} \rightarrow \nu_{\tau}$) $CC \nu_{\tau}$ Hadrons: ρ , π^{\pm} , π^{0} , (BR: ~65%) Cosine Zenith Angle Super-Kamiokande IV Run 999999 Sub 2 Event 7 0.9 Inner: 8104 hits, 30188 pe Outer: 3 hits, 2 pe 0.8 Trigger: 0x07 0.5 D wall: 1130.7 cm Evis: 3.3 GeV 0.7 0.6 Charge (pe) 0.5 0.4 0.3 0.2 0.1 10 Energy [GeV]

- Direct signal of atmospheric neutrino oscillation
- Large background for neutrino mass-hierarchy search
- → Complicated event topologies with many overlapping charged particles
- ightharpoonup Backgrounds $u_{u,e}$ DIS similar (but more forward) topology

1000

Times (ns)

Search for Tau Neutrinos at SK: Selection

- Pre-selection
 - Fully-Contained
 - Fiducial Volume (22.5kton)
 - Visible Energy > 1330.0 MeV
- Seven Neural Network Variables
 - Log10 (Visible Energy)
 - Particle ID Likelihood
 - Number of Decay Electrons
 - Distance to farthest electron
 - Event sphericity
 - Number of Ring Candidates
 - Fraction of momentum in leading ring

- Difficult to fully reconstruct all particles, so count ring pieces
- Typically τ decay produces more pions above C threshold
 - Good problem for pattern recognition, CNN

Search for Tau Neutrinos at SK: Selection

Search for Tau Neutrinos at SK: Performance

PHYS. REV. <u>D</u> 98, 052006 (2018)

NN > 0.5	Background	Signal ($ u_{ au}$)
Efficiency	28%	76%
Purity	95.3%	4.7%
Rate [Mton∙ year] ⁻¹	8467	422

MLP 7 Node Input Layer 10 Node Hidden Layer 1 Node Output Mean Square Estimator Back Propagation

Search for Tau Neutrinos at SK: Performance

NN > 0.5	Background	Signal $(u_{ au})$
Efficiency	28%	76%
Purity	95.3%	4.7%
Rate [Mton∙ year] ⁻¹	8467	422

Decay mode	Branching ratio (%)	Tau-like fraction (%)
$e^-ar{ u}_e u_ au$	17.83	67.3 ± 2.2
$\mu^-ar{ u}_\mu u_ au$	17.41	42.6 ± 2.6
$\pi^- u_ au$	10.83	84.7 ± 3.8
$\pi^-\pi^0 u_ au$	25.52	81.0 ± 2.1
$3\pi\nu_{ au}$	18.29	88.7 ± 2.5
Others	10.12	90.5 ± 3.4

- Neutral Current (NC), isotropic hits similar to signal
- With 1st-gen(+) ML: reconstruct ρ_{770} , better μ , π , e, γ separation?

Search for Tau Neutrinos at SK:

$$Data = PDF_{BG} + \alpha \times PDF_{tau} + \sum \epsilon_i \times PDF_i$$

$$\alpha = 1.47 \pm 0.32$$
 (stat+syst)

 4.6σ rejection of no τ appearance

- Fit 2-dimensional PDFs ($\cos \theta$, Neural Network), while simultaneously varying systematic error templates
 - No cut to separate tau-like and non-tau-like
- Uses 328 kton-yr exposure (1996-2018 data)

General Classification of Multi-Ring Events: BDT (Light GBM)

- Separate atmospheric ν sample into pieces with different sensitivity
 - ${\bf v}_e: \bar{\nu}_e$ Mass hierarchy, δ_{CP} ; ν_u atm. Mixing ; NC background
- Like tau problem, hard to identify leading lepton among many rings
- Adopt BDT
 - First multi-classifier at SK adopted in 2020
 - Improved sensitivity and reduced training time (MLP:20min \rightarrow BDT:10s)

General Classification of Multi-Ring Events: BDT (Light GBM)

%	Signal Eff.	Purity	Signal Eff.	Purity
$ u_e - like$	45.8	46	34.4	46
${ar u}_e - like$	62.4	32	60.4	24
$ u_{\mu} - like$	84.4	91	77.0	93
NC+ $ u_{ au}$	44.2	54	55.6	44
Train Time	10 s			
$\Delta \left(\Delta \chi^2_{MO} ight)$	1.1		0	

- Separate atmospheric ν sample into pieces with different sensitivity
 - $\mathbf{v}_e: \bar{\nu}_e$ Mass hierarchy, δ_{CP} ; ν_u atm. Mixing; NC background
- Like tau problem, hard to identify leading lepton among many rings
- Adopt BDT
 - First multi-classifier at SK adopted in 2020
 - Improved sensitivity and reduced training time (MLP:20min \rightarrow BDT:10s)

Neutron Tagging

- Neutrons useful for
 - Neutrino-antineutrino separation
 - Reducing backgrounds to proton decay
 - Tagging supernova relic neutrinos

Integrated Event Display $t_{\nu} + [18,540]\mu s$ with two neutrons (red hits) and dark noise (blue hits)

- Capture on hydrogen produces 2.2 MeV gamma ~ 10 PMT hits
- Similar number expected from dark hits, but not along a Cherenkov ring
 - BG model taken directly from data (random trigger)

- Successfully observe neutrons, but with low efficiency (26%) in pure water
 - (N.B. in 0.01% Gd-loaded water $\sim 40\sim50\%$)
- NN is sensitive to changes in dark rate, water transparency, and $n \nu$ distance
 - Can these be improved with 1st-gen ML?

Neutron Tagging: BG Reduction PDK

Max PMT hits in 10ns

- Successfully observe neutrons, but with low efficiency (26%) in pure water
 - (N.B. in 0.01% Gd-loaded water $\sim 40 \sim 50\%$)
- NN is sensitive to changes in dark rate, water transparency, and $n \nu$ distance
 - Can these be improved with 1st-gen ML?

Other Applications

Dinucleon Decay Search Search
$$pp \to K^+K^+ \to \mu^+\nu_\mu\pi^+\pi^0$$

- R-Parity-violating mode
 - Predicts many particles and rings (K+ above C threshold)
- TMVA-based BDT
- 32 input variables , 500 trees
- Achieve 12.6% signal efficiency

$$\tau/BR_{pp\to K^+K^+} > 1.7 \times 10^{32}$$
 years.

Summary and Conclusions

- So far SK has mostly adoped "0th-generation" ML for simple classification problems
- Expect some improvement in performance using more modern algorithms and techniques
 - Many problems lend them selves to image processing and pattern recognition
- Some effort towards Multiple-label classification problems implemented and kinematic estimation
- More advanced ML techniques likely to improve many aspects of the experiment
 - ...underway.

Supplements