加速器実験における転移学習の応用

Tomoe Kishimoto

KEK, Computing Research Center

U Tokyo, Institute for AI and Beyond

T.KISHIMOTO (KEK) 2022/7/8 2022/7/8

Introduction

"Transfer learning" technique has been successfully applied to many scientific field such as computer vision, natural language processing, etc

- Image classification: "ants" vs "bees"
 - Significant improvement by transfer learning
 - > Pre-trained on 1.2 million images with 1000 categories

Q: Is transfer learning technique beneficial for collider physics?

Sustainability

- > Deep learning (DL) requires a large amount of data
 - Training data are typically generated by Monte Carlo (MC) simulations based on theories
 - ➤ However, MC simulations are computationally expensive
 - Electric power consumption, Green computing
 - → Maximizing DL performance with a limited number of data is a key concept
 - → Transfer learning is a feasible approach

Expected CPU consumption (ATLAS)

Transfer learning: basic idea

Source task Target task Source data Target data **Transfer learned** knowledge Target model Source model Target labels Source labels

Small amount of data/labels

Large amount

of data/labels

Use case of physics analysis

- There are many analysis channels in collider physics
 - Higgs, Exotic, SUSY analysis, etc
- Currently, dedicated DL models are trained from scratch for each analysis channel
 - > Large amount of training data (MC data) for each channel
 - → If transfer learning can be applied to different analysis channels, we can save computing resources (MC generation, training)

Physics processes

- > To examine the transferability, several types of MC simulation data were generated by Madgraph + Pythia8 + Delphes
 - ightharpoonup e.g.) 2HDM vs $tar{t}$

- Same final state particles (lvbbjj)
- > 4-vector (p_T, η, ϕ, m) + object-type for each object are inputs of DL models
 - \rightarrow 5 x 6 = 30 input variables in this example

Datasets

> Physics processes of **source** and **target** datasets:

Category	Bkg. vs Sig.	Signal mass	Final state	# of variables
Source dataset	$tar{t}$ vs $2HDM$	$H^0 = 425 \text{ GeV}, H^{\pm} = 325 \text{ GeV}$	lvbbjj	5 x 6
Target dataset 1	$tar{t}$ vs $2HDM$	$H^0 = 500 \text{ GeV}, H^{\pm}$ =400 GeV	lvbbjj	5 x 6
Target dataset 2	$tar{t}$ vs Z'	$Z'=1000~{ m GeV}$	lvbbjj	5 x 6
Target dataset 3	ttbb vs ttH	Standard model	lvbbbbjj	5 x 8
Target dataset 4	$Z v v$ vs $ ilde{g} ilde{g}$	$\tilde{g}=607~\mathrm{GeV}$	ννϳϳϳϳ	5 x 5

→ Simple expectation: transfer learning will work well for similar topology (physics)

Model overview

➤ To apply the transfer learning to various analysis channels, DL model must handle variable number of objects and be a permutation invariant

→ Graph Neural Networks (GNN)

- Model consists of two parts: feature module and classifier module
- > Two types of GNN layer are examined:
 - w/ and w/o self-attention mechanism (GATv2Conv in DGL library)

Graph attention network

- Attention weights (edge features) represent importance of node (object) relations
 - > e.g.) two b-jets from Higgs are important
 - Multi-head technique is used
 - Introduces small additional trainable parameters

Number of trainable parameters:

	Feature module	Classifier module	Total
w/o attention model (GNN model)	333312	514	333826
w/ attention model (GAT model)	334848 (个1536)	514	335362 (个1536)

"w/o attention model" performs simple message-passing (copying node features) without weights

Training of source task

Source task

- Learning rate: <u>CosineAnnealingLR</u>
 - $\rightarrow 1.0 \times 10^{-2} \sim 1.0 \times 10^{-4}$
- > Batch size: 2048, # of epochs: 100
- Grid search for model architecture:
 - > # of layers: [5, **6***, 7, 8]
 - # of hidden features: [128, 256*, 512, 1024]
 - > # of multi-heads: [2, 4*, 8, 16]

*Bold parameters are selected

Training of target task

- Target tasks
 - Only weights of the feature module are transferred from source task to target task
 - Fixed: the transferred weights are not updated during the training with target datasets
 - Tuned (fine-tuning): the transferred weights are updated (tuned) during the training with target datasets
 - Classifier module is trained from scratch
 - Same learning rate with the source task
 - Batch size: 256, # of epochs: 100
 - > Cases of 10³, 10⁴, 10⁵, 10⁶ target events are examined

Result: accuracy

- Significant improvement if topology is similar
- > Fixed weights decreases performance if # of events are sufficient

Summary

- > Transfer learning technique is applied to the event classification in collider physics
 - > Graph neural network architecture allow us to adapt different analysis channels
 - > Transfer learning provides a significant improvement when target dataset is insufficient
 - ➤ E.g.) ~20% improvement (target dataset1) for target 1.0 x 10⁴ events
 - > Fine-tuning is effective in absorbing topology differences
 - \triangleright Similar performance between w/ and w/o transfer learning for target > 1.0 x 10⁶ events

Backup

Technical details

➤ DL models are implemented using PyTorch + DGL libraries

- Git link to source codes
- Generated MC simulation events:
 - > 2~3 days to generate source and target datasets with ~300 CPU cores
 - Difficult to increase statistics more

	Train data	Valid data	Test data
Source dataset	2.0×10^7	1.0 x 10 ⁵	1.0 x 10 ⁵
Target dataset for each	1.0 x 10 ⁶	1.0 x 10 ⁵	1.0 x 10 ⁵

- GPU architecture for DL training
 - Nvidia A100 x 1, ~7 hours for training of source task (100 epochs)

Event classification

- > "Event classification" is a typical problem in collider physics
 - > Interesting signal events are separated from background events
 - > Based on the information of reconstructed particles (objects), lepton, jets, missing E_T, etc

→ There are many studies using Deep learning for this event classification problem

DL model

To apply the transfer learning to various analysis channels, DL model must handle variable number of objects and be a permutation invariant

→ Graph Neural Networks (GNN)

Attention outputs: source dataset

Avg. of attn. outputs =
$$\frac{1}{\text{nevnets} \times \text{mheads}} \sum_{i=1}^{\text{nevents mheads}} \sum_{j=1}^{\text{total outputs}} (\text{attn. outputs}^{i,j})$$

- Jets from b-quark (b-jets) are considered important in GAT model
 - Higher values of attention outputs
 - ➤ Consistent with our knowledge: H→bb is a discriminant signature

Result: over-training

- > Example of results
 - > Target dataset 1 $(t\bar{t} \text{ vs } 2HDM)$
 - > 1.0 x 10⁴ target events

- > ~20% improvements by the transfer learning (TL) in these examples
 - > TL with tuned weights still causes over-training if target dataset is small
 - > Fixed weights show better performance in these cases

Result: error reduction

Error Reduction =
$$1 - \frac{Error^{TF}}{Error^{No-TF}} \begin{cases} > 0 & \text{improvement by TF} \\ \le 0 & \text{no improvement by TF} \end{cases}$$

Error = $1 - Accuracy$

- Significant improvement if topology is similar
- Fixed weights decreases performance if # of events are sufficient

Attention outputs: target dataset

- Fine-tuning increases importance of missing energy (MET)
 - > Effective in absorbing differences between source and target topologies

