Amit Kumar McGill University, Canada July 29th, 2022

Jets in QCD medium

{

Jet

Outline

- ❑ **Hard probes in heavy-ion collisions**
- ❑ **Factorization of soft and hard scales**
- ❑ **Scale dependence of Parton distribution function and Fragmentation function**
- ❑ **Overview of JETSCAPE framework** ❑ **Basic review of jet energy loss in high virtuality and low virtuality phase** ❑ **MATTER, LBT and MARTINI energy loss modules**
- ❑ **Recent results based on multi-stage jet energy loss (MATTER+LBT) approach**

Jets and leading hadron production in heavy-ion collisions

Proton-Proton Collisions Manufacturers Heavy-ion Collisions

 \square Jets are collimated spray of soft and hard hadrons in a narrow cone \Longrightarrow Proxy for the hard **parton (After scattering)**

❑ **Initial state hard scattering leading hadron and Jets** ⟹

❑ **Perturbative QCD can be used to high precision**

 $d^2N^{AA}/dydp_T$ $d^2N^{pp}/dydp_\text{T} \times \langle N_{coll}^{AA} \rangle$ ⟩

$$
R_{AA} \equiv \frac{d^2 N^A}{d^2 N^{pp} / dy}
$$

❑ **The plasma is strongly interacting**

\square Nuclear modification factor R_{AA}

 \square Hadron R_{AA} is less than 1, **whereas isolated photon and boson** R_{AA} is unity. Z^0 boson R_{AA}

Hard probes: Evidence for strongly interacting QGP

Factorization of short and long-distance physics

$$
\frac{d\sigma^{AB\to h+X \text{ or Jet}+X}}{d^2p_Tdy} \sim \int dx_a dx_b \quad f_a^A(x_a, Q^2) f_b^A
$$

- ❑ Work due to Collins, Soper, Sterman for pp collision
- ❑ Factorization assumed for High p_T hadron/Jet production in Heavy-ion Collision

Total cross section is a product of probabilities *J*

0.6 model uncert. parametrization uncertainten uncertainten uncertainten uncertainten uncertainten uncertainten uncerte autoriza $\mathbf S$ cale (Q^2) evolution of parton distribution function $f\!(x)$

Proton structure is a scale dependent phenomenon \mathbf{r} Ω benomenon at *Q*² = 1.9 GeV2 (top) and *Q*² = 10 GeV2 (bottom). The gluon and sea distributions are scaled

Amit Kumar (JETSCAPE Summer School 2022), July 29th, 2022 **6** .
منابع 22), July 29th, 2022

$\mathbf{Scale}\ (\mathcal{Q}^2)$ evolution of Fragmentation function $f\!(x)$

❑**Initial State Hard scattering produces are highly virtual objects**

- ❑ **The hard parton undergo radiative splitting which leads to decrease in the virtuality of the hard parton**
- ❑ **Emission process stops when the off**shell ness becomes small $(Q^2\approx 1\; {\rm GeV^2}),$ **— In this regime perturbative description is no longer valid**
- ❑ **Partons undergo hadronization —detailed mechanism is unknown: Fragmentation function, PYTHIA string fragmentation**

 $k^2 = 0$

Kinematic variables in light-cone coordinate system

 l_\perp^2 **⊥**

Off-shellness: $q^2 = 2q^+q^- - q_\perp^2 - m_0^2$

Example: Particle traveling in -z direction $\implies q^{-} \gg q^{+}$; $q_{\perp} = 0$

*k***⁺ =**

*p***⁺ =**

 Q^2 =

l **2 ⊥**

2*q***−***y*

l **2 ⊥**

We know

 $p^2 = 0$

 $q^{\mu} = k^{\mu} + p^{\mu}$

 $q^2 = 2q^4q^7 = Q^2$

Optical theorem

❑**Imaginary part of the amplitude of forward scattering diagram is product of the diagram obtained by cutting the internal line**

Forward scattering diagram

(*p*0)2 − | *p*

$$
\frac{1}{(p^2 - |\vec{p}|^2)} \Longrightarrow \delta \left[(p^0)^2 - |\vec{p}|^2 \right]
$$

❑**Cut-line represents final state** ❑ **Propagators on the cut-line are put on-shell**

Fragmentation function: Single emission diagram and virtual correction

Virtual diagram

and this should be included in the $D(z)$ **as gluon formation happens in distant future.**

 $P(y) =$ $1 + y^2$ ✦ **Splitting function:**

 \blacklozenge Soft divergence $y = 1$, canceled by the **contribution from the virtual diagram** $1 - y$

◆ Collinear divergence l_{\perp}^2 → 0 remains

Formation time : $\tau^- = 2q^-/Q^2 = 2q^-y(1-y)/l^2_{\perp}$ ⊥

$$
\frac{d\sigma}{\sigma_0} = \frac{\alpha_s(Q^2)}{2\pi} \int_0^{Q^2} \frac{dl_\perp^2}{l_\perp^2} \int_z^1 \frac{dy}{y} P_+(y) D\left(\frac{z}{y}\right)
$$

Multiple emissions and vacuum DGLAP equation

$$
\frac{dD(z, Q^2)}{dQ^2} = \frac{\alpha_s}{2\pi Q^2} \int_z^1 \frac{dy}{y} P_+(y) D\left(\frac{z}{y}, Q^2\right) \qquad \text{Re}
$$

$$
\int_0^{Q^2} \frac{dl_{\perp}^2}{l_{\perp}^2} \longrightarrow \int_0^{\mu^2} \frac{dl_{\perp}^2}{l_{\perp}^2} + \int_{\mu^2}^{Q^2} \frac{dl_{\perp}^2}{l_{\perp}^2}
$$

Absorb into bare fragmentation function

GLAP equation is integro-differential equation Requires Input fragmentation function at lower scale μ^2

)

$$
D(z,Q^2) = \left[1 + \frac{\alpha_s(Q^2)}{2\pi}\int_{\mu^2}^{Q^2} \frac{dl_{0\perp}^2}{l_{0\perp}^2} P_+(y_0) + \frac{\alpha_s(Q^2)}{2\pi}\int_{\mu^2}^{Q^2} \frac{dl_{0\perp}^2}{l_{0\perp}^2} P_+(y_0) \frac{\alpha_s(l_{0\perp}^2)}{2\pi}\int_{\mu^2}^{l_{0\perp}^2} \frac{dl_{1\perp}^2}{l_{1\perp}^2} P_+(y_1) + \dots \right] * D(z,\mu^2)
$$

$$
\int_{P(y) * D(z)} \int_{z}^{\frac{1}{y}} \frac{dy}{y} P_+(y) D(z) dy
$$

Formulated by V. Gribov and L. Lipatov (1972) G. Altarelli and G. Parisi (1977) Yu. Dokshitzer (1977)

Factorization and parton energy loss in-medium

$$
\frac{d\sigma^{AB\to h+X \text{ or Jet}+X}}{d^2p_{\text{T}}dy} \sim \int dx_a dx_b \quad f_a^A(x_a, Q^2) f_b^A
$$

Total cross section is a product of probabilities

Jet evolution in QGP a multiscale phenomenon

High E, Low Q phase: (Scattering dominant)

High E, High Q phase: (Radiation dominant)

High temperature Low temperature

Low E, Low Q phase: (Thermal partons)

> Low E, Low Q phase: (Thermal partons)

Jet evolution in QGP a multiscale phenomenon

High E, Low Q phase: (Scattering dominant)

High E, High Q phase: (Radiation dominant)

High temperature Low temperature

Low E, Low Q phase: (Thermal partons)

> Low E, Low Q phase: (Thermal partons)

Relevant theoretical framework High E, High Q: Higher-twist approach MATTER

Low E, low Q: Strong coupling formalism AdS-CFT

High E, low Q: On-shell parton transport model AMY, BDMPS approach LBT, MARTINI

Jet evolution in QGP a multiscale phenomenon

High E, Low Q phase: (Scattering dominant)

High E, High Q phase: (Radiation dominant)

High temperature Low temperature

Low E, Low Q phase: (Thermal partons)

> Low E, Low Q phase: (Thermal partons)

Outstanding questions: What is the microscopic structure of QGP ? Are there quasi-particles?

How does jet energy thermalizes in the plasma?

Jet substructure modifications?

Modification to Quark-gluon fractions ?

What can we learn about jet transport coefficients?

JETSCAPE: Framework to simulate all aspects of heavy-ion collisions

JETSCAPE is available on GitHub: github.com/JETSCAPE GitHub

❑ **Modular, extensible and task-based event generator** ❑ **Framework is modular to "multi-stage", "energy-loss"**

JETSCAPE pp19 tune [\(arXiv:1910.05481](https://arxiv.org/pdf/1910.05481.pdf)) JETSCAPE framework [\(arXiv:1903.07706](https://arxiv.org/pdf/1903.07706.pdf)) JETSCAPE AA (arXiv:2204.01163)

JETSCAPE: Framework to simulate all aspects of heavy-ion collisions

❑ **Modular, extensible and task-based event generator** ❑ **Framework is modular to "multi-stage", "energy-loss"**

Diagram by:

Y. Tachibana **In this session, we focus on parton energy loss for light-flavors**

JETSCAPE pp19 tune [\(arXiv:1910.05481](https://arxiv.org/pdf/1910.05481.pdf)) JETSCAPE framework [\(arXiv:1903.07706](https://arxiv.org/pdf/1903.07706.pdf)) JETSCAPE AA (arXiv:2204.01163)

Jet evolution in QGP a multiscale phenomenon

High E, Low Q phase: (LBT, MARTINI)

High E, High Q phase: (MATTER)

High temperature Low temperature

Low E, Low Q phase: (Thermal partons)

> Low E, Low Q phase: (Thermal partons)

Heavy quark energy loss: Talk by Wenkai Fan

Medium response to jets: Talk by Ismail Saudi

High virtuality phase

Jet energy loss transport coefficients

❑ **Factorized approach to jet evolution**

 \Box Transport coefficient $\stackrel{\wedge}{q}$: Average transverse momentum squared per unit length ⃗**2**

 $\hat{\boldsymbol{q}}(\vec{r},t) =$ **⟨** *k* **⊥⟩** *L* $\propto \langle M | F_{\perp}^{+}(y^-, y_{\perp})F^{+\perp}(0) | M \rangle$

$$
\frac{dN}{dy d\mu^2} = \frac{\alpha_s}{2\pi} \frac{P_{qg}(y)}{\mu^2} \left[1 + \int_{\xi_0^+}^{\xi_0^+ + \tau^+} d\xi^+ K(\xi^+, \xi_0^+, y, q^+, \mu^2) \right];
$$

$$
K(\xi^+, \xi_0^+, y, q^+, \mu^2) = \frac{1}{y(1 - y)\mu^2 (1 + \chi)^2} \left\{ 2 - 2 \cos\left(\frac{\xi^+ - \xi_0^+}{\tau^+}\right) \right\} \times \left\{ C_{qg}^{\hat{q}} \hat{q} + C_{qg}^{\hat{e}} \hat{e} + C_{qg}^{\hat{e}} \hat{e}_2 \right\}
$$

□ Transport coefficient $\stackrel{\wedge}{e}$: *e*

 $\hat{\boldsymbol{e}}(\vec{r},t) =$ $\langle k_z \rangle$ *L* **∝ ⟨***M***|∂−***A***+(***y***−,** *y***⊥)***A***+(0)|***M***⟩**

a Transport coefficient \hat{e}_2 : **̂**

 $\hat{e}_2(\vec{r},t) =$ **̂** $\langle k_z^2 \rangle$ *L* Higher-twist formalism: (collinear expansion) $\hat{e}_2(\vec{r},t) = \frac{\sqrt{\kappa_z t}}{I} \propto \langle M | F^{+-}(y^-, y_\perp) F^{+-}(0) | M \rangle$

$Q_1^2 \geq Q_2^2 \geq Q_3^2 \dots$

time: $\tau^- \sim q^-/Q^2$

MATTER jet energy loss

❑ **Modular All Twist Transverse-scattering Elastic-drag and Radiation** ❑ **Based on in-medium DGLAP evolution equation**

Virtuality ordered emission approximation

Repeating single emission single scattering kernel

Vacuum contribution are dominant, and medium-induced radiations are treated as correction

In limit:
$$
\langle k_{\perp}^2 \rangle \sim \hat{q}\tau^- \langle \langle k_{\perp}^2 \rangle \langle Q^2 \rangle
$$
 Formation to
\n
$$
\frac{\partial D(z, Q^2, \zeta_i^-)}{\partial \log Q^2} = \frac{\alpha_S}{2\pi} \int_{z}^{1} \frac{dy}{y} \left[P_+(y) D\left(\frac{z}{y}, Q^2, \zeta_i^-\right) + \frac{z}{z} \right]
$$
\n
$$
\text{Vacuum term}
$$

$$
+\left(\frac{P(y)}{y(1-y)}\right)_+ D\left(\frac{z}{y}, Q^2, \zeta_i^- + \tau^-\right) \times \int\limits_{\zeta_i^-}^{\zeta_i^+ + \tau^-} d\zeta \frac{\hat{q}(\zeta^-)}{Q^2} \left\{2 - 2\cos\zeta\right\}
$$

Medium term

Phys. Rev. C 88, 014909 (2013) Phys. Rev. C 96, 024909 (2017)

Low virtuality phase

LBT jet energy loss model

❑**Based on linear Boltzmann transport equation**

Inelastic scattering: Single gluon emission rate using Higher Twist (depends on \hat{q})

Evolution of phase-space distribution

$$
p_i \cdot \partial f_i(x, p) = \Gamma_{el} + \Gamma_{inel}
$$

Elastic scattering: LO 2 \leftrightarrow 2 proccess

 Γ _{*total*} = \sum *i* Γ_i ; $P_{el} = \Gamma_{total} \Delta t$ ❑**Total elastic scattering rate and probability**

$$
\Gamma_{12\rightarrow 34}(p_1) = \int \frac{d^3 p_2}{(2\pi)^3 2E_2} \frac{d^3 p_3}{(2\pi)^3 2E_3} \frac{d^3 p_4}{(2\pi)^3 2E_4} (f_1 f_2 - f_3 f_4)
$$

❑**Elastic scattering kernel**

Phys. Rev. C 91, 054908 (2015) Phys. Rev. C 94, 014909 (2016)

Inelastic scattering: Single gluon emission rate using Higher Twist (depends on \hat{q})

LBT jet energy loss model

❑**Inelastic scattering: Single gluon emission**

□ Multiple scattering (*n*) during each time step **are allowed (Poisson distribution):**

❑ **Medium-induced gluon radiation:**

$$
\langle N_g \rangle = \Delta t \int dx dk_{\perp}^2 \frac{dN_g}{dx dk_{\perp}^2 dt}
$$

Amit Kumar (JETSCAPE Summer School 2022), July 29th, 2022 **Phys. Rev. C 94, 014909 (2016)** 24 **Phys. Rev. C 91, 054908 (2015) Phys. Rev. C 94, 014909 (2016)**

$$
\frac{dN_g}{dxdk_{\perp}^2 dt} = \frac{2\alpha_s C_A \hat{q} P(x) k_{\perp}^4}{\pi (k_{\perp}^2 + x^2 m^2)^4} \sin\left(\frac{t - t_i}{2\tau_f}\right)
$$

❑ **Inelastic probability for medium-induced gluon radiation**

$$
P(n) = \frac{\langle N_g \rangle^n}{n!} e^{-\langle N_g \rangle}
$$

$$
P_{inel} = 1 - e^{-\langle N_g \rangle}
$$

MARTINI jet energy loss model

JHEP 01, 030 (2003) JHEP 06, 030 (2002)

 $d\Gamma(p,k)$ *dk*)

Momentum distribution of the hard parton is given by The following Fokker-Planck type rate equations

$$
\frac{dP(p)}{dt} = \int_{-\infty}^{\infty} dk \left(P(p+k) \frac{d\Gamma(p+k,k)}{dk} - P(p) \right)
$$

-
- **Phys. Rev. C 80:054913 (2009)**

❑**Modular Algorithm for Relativistic Treatment of heavy IoN Interactions**

- ❑**Based on Arnold-Moore-Yafffe (AMY) formalism** In limit of high temperature so QCD coupling is weak $g < 1$
- ❑ **Landau-Pomeranchuk-Migal (LPM) effect:** Scattering centers act coherently during formation time when $\tau_f > \lambda_{MFP}$ **Coherent scatterings leads to the suppression of emissions** In AMY formalism LPM effect is calculated by resuming infinite ladder **diagrams**

MARTINI jet energy loss model

 $\frac{1}{6}$ $(2N_c + N_f)$

$$
\frac{d\Gamma}{dk}(p,k,T) = \frac{C_s g^2}{16\pi p^7} \frac{1}{1 \pm e^{-k/T}} \frac{1}{1 \pm e^{-(p-k)/T}} \begin{cases} \frac{1 + (1-x)^2}{x^3(1-x)^2} \\ N_f \frac{x^2 + (1-x)^2}{x^2(1-x)^2} \\ \frac{1 + x^4 + (1-x)^4}{x^3(1-x)^3} \end{cases}
$$

 $\times \int \frac{d^2h}{(2\pi)^2} 2h \cdot Re F(h,p,k)$

The function *F*(*h*, *p*, *k*) **is the solution of the integral equation that depends on Collision kernel**

$$
C(q_{\perp}) = \frac{m^2 D}{q_{\perp}^2 (q_{\perp}^2 + m_D^2)}, \ \ m_D^2 = \frac{g_s^2 T^2}{6}
$$

❑**Transition rate for process 1->2 is given by**

❑ **Elastic scattering rates are same as LBT** ❑**Quark-gluon conversion channel is also included**

❑ **It is a weakly coupled approach to medium response**

Medium partons kicked out the jet parton Propagates as a parton shower in jet shower

Sampled from the thermal distribution Subtracted from the total signal

Recoil-hole: Medium response

❑**Recoil Parton**

❑**Sampled medium parton (Holes)**

Jet parton and recoil are hadronized together to form total signal

Holes partons are hadronized separately and used to determine the correlated background to jet

Jet shape

JETSCAPE pp19 tune

EXPERIGERED Optimized value of parameters:

- Lambda QCD: $\Lambda_{\text{QCD}} = 200 \text{MeV}$
- Initial virtuality (off-shellness) of the parton after hard scattering: \mathcal{Q}_{in} =

Inclusive jet cross section Jet shape Jet Mass

 $\mathsf{Effective\ jet\text{-}quenching\ strength} \implies \hat{q}_{\mathrm{HTL}} \cdot f(Q^2)$ **̂**

Jets and Leading hadron suppression at \sqrt{s} *NN* **= 5.02 TeV**

Strong coherence effects are observed for high- p_T hadrons

$$
f(Q^2) = \frac{1 + c_1 \ln^2(Q_{\rm sw}^2) + c_2 \ln^4(Q_{\rm sw}^2)}{1 + c_1 \ln^2(Q^2) + c_2 \ln^4(Q^2)},
$$

 \mathbf{w} here $f(\mathcal{Q}^2) \rightarrow 1$ in low virtuality phase

Collision energy dependence of Jet and Hadron R_{AA}

Amit Kumar (JETSCAPE Summer School 2022), July 29th, 2022 **30 10² 10³**

Au+Au at 200 GeV

P C_l OCLIVULE

Jet Fragmentation function

Summary

❑**Factorization of soft and hard scales** ❑**Parton distribution function and Fragmentation function** ❑ **Vacuum DGLAP equation and medium modified DGLAP equation**

- ❑ **Basic review of jet energy loss in high virtuality and low virtuality phase**
- ❑ **MATTER, LBT and MARTINI energy loss module**

❑**Wenkai Fan : Overview of heavy quark energy loss**

Next talks in jet session:

❑ **Ismail Soudi: Weakly-coupled and strongly-coupled approach of medium response**

Th*anks* to *a*ll *TA*'*s and Chairs*

Amit Kumar (JETSCAPE Summer School 2022), July 29th, 2022
Amit Kumar (JETSCAPE Summer School 2022), July 29th, 2022

