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❑ Hard probes in heavy-ion collisions  

❑ Factorization of soft and hard scales 

❑ Scale dependence of Parton distribution function and Fragmentation 
function 

❑ Overview of JETSCAPE framework  
❑ Basic review of jet energy loss in high virtuality and low virtuality 

phase 
❑ MATTER, LBT and MARTINI energy loss modules 

❑ Recent results based on multi-stage jet energy loss (MATTER+LBT) 
approach 
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   Jets and leading hadron production in heavy-ion collisions
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❑ Initial state hard scattering   leading hadron and Jets 
❑ Jets are collimated spray of soft and hard hadrons in a narrow cone   Proxy for the hard 

parton (After scattering) 
❑ Perturbative QCD can be used to high precision

⟹
⟹

Proton-Proton Collisions Heavy-ion Collisions

   Leading Hadrons 
and jets 

Nucleus 
(Pb or Au)

Nucleus 
(Pb or Au)

Proton
Proton

Leading Hadrons 
And jets
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❑ Nuclear modification factor  RAA

Mueller et al., Ann. Rev. Nucl. Part. Sci. 62, 361 (2012)

RAA ≡
d2NAA/dydpT

d2Npp/dydpT × ⟨NAA
coll⟩

❑Hadron   is less than 1, 
whereas isolated photon and 
  boson    is unity. 

❑The plasma is strongly 
interacting

RAA

Z0 RAA

Leading hadron 
suppressed

Nucleus Nucleus

ProtonProton

Leading 
hadrons

          Hard probes: Evidence for strongly interacting QGP
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Factorization of short and long-distance physics

                
dσAB→h+X or Jet+X

d2pTdy
∼ ∫ dxadxb  fA

a (xa, Q2) fB
b (xb, Q2) 

d ̂σ
d ̂t

D̃med
modified(z, Q2) +𝓞 (

Λ2
QCD

Q2 )

 pin

 xa =
Pa

PA

    Hadron 
or Jet

pT

❑ Work due to Collins, Soper, 
Sterman for pp collision 

❑ Factorization assumed for 
High pT hadron/Jet production 
in Heavy-ion Collision 
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 xb =
Pb

PB

 z =
pT

pin

  Q2

Soft Hadrons (LongDistance)

Hard partons (Short-distance)

Total cross section is a product of probabilities J̃med
modified(z, Q2)
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Q2

Proton structure is a scale dependent phenomenon

❑ Parton distribution function for proton at 
two different scale

Small

Q2
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Q2

Electron
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Figure 18: The parton distribution functions from HERAPDF1.0, xuv, xdv, xS = 2x(Ū+ D̄), xg,
at Q2 = 1.9 GeV

2
(top) and Q2 = 10 GeV

2
(bottom). The gluon and sea distributions are scaled

down by a factor 20. The experimental, model and parametrisation uncertainties are shown

separately.
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xg/20
xg/20

 xB =
Q2

2M . E
❑ Momentum fraction of struck parton

❑  Energy of photon,  Momentum transfer 
M= Rest mass of proton
E = Q2 =

E, Q2

Scale   evolution of parton distribution function  (Q2) f(x)
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Scale   evolution of Fragmentation function  (Q2) f(x)
❑Initial State Hard scattering produces are highly virtual objects

+ + +
Q1 Q2 Q3 Q4

❑ The hard parton undergo radiative 
splitting which leads to decrease in the 
virtuality of the hard parton 

❑ Emission process stops when the off-
shell ness becomes small  ,
— In this regime perturbative description 
is no longer valid 

❑ Partons undergo hadronization —detailed 
mechanism is unknown: Fragmentation 
function, PYTHIA string fragmentation

(Q2 ≈ 1 GeV2)

Q2
1 ≥ Q2

2 ≥ Q2
3 . . . . .
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kµ =
[

!2
⊥

2q−(1−y), (1− y)q−, "!⊥
]

pµ =
[

!2
⊥

2q−y , yq
−,−"!⊥

]

z

qµ = [q+, q−,"0 ⊥]
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Kinematic variables in light-cone coordinate system

Forward scattering diagram

❑Minkowski coordinate

Four vector:  q = (qt, qx, qy, qz)

Off-shellness: 
 q2 = (qt)2 − (qx)2 − (qy)2 − (qz)2 − m2

0

❑Light-cone coordinate
Four vector:  q = (q+, q−, q1

⊥, q2
⊥)

  ;q+ =
qt + qz

2
 ;q− =

qt − qz

2
 q⊥ = (qx)2 + (qy)2

Off-shellness:  q2 = 2q+q− − q2
⊥ − m2

0

Example: Particle traveling in -z direction   ⟹ q− ≫ q+;    q⊥ = 0

Momentum variables

k2 = 0

qμ = kμ + pμ

p2 = 0
q2 = 2q+q− = Q2

p− = yq−

k− = (1 − y)q−

k+ =
l2
⊥

2q−(1 − y)

p+ =
l2
⊥

2q−y

Q2 =
l2
⊥

y(1 − y)

If

We know
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Optical theorem 

❑Imaginary part of the amplitude of forward scattering diagram 
is product of the diagram obtained by cutting the internal line

Forward scattering diagram

Amplitude Complex conjugate

) )*( (( =2 Im ) q

 l

 p

1
(p0)2 − | ⃗p |2 ⟹ δ [(p0)2 − | ⃗p |2 ]

 q

 l

 p  q

 l

 p

❑Cut-line represents final state 
❑ Propagators on the cut-line are 

put on-shell  
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kµ =
[

!2
⊥

2q−(1−y), (1− y)q−, "!⊥
]

pµ =
[

!2
⊥

2q−y , yq
−,−"!⊥

]

z

qµ = [q+, q−,"0 ⊥]

 10

Fragmentation function: Single emission diagram and virtual correction

Virtual diagram

dσ
σ0

=
αs(Q2)

2π ∫
Q2

0

dl2
⊥

l2
⊥ ∫

1

z

dy
y

P(y)D ( z
y )   −  

αs(Q2)
2π ∫

Q2

0

dl2
⊥

l2
⊥

D(z)∫
1

0

dy
y

P(y)

dσ
σ0

=
αs(Q2)

2π ∫
Q2

0

dl2
⊥

l2
⊥ ∫

1

z

dy
y

P+(y)D ( z
y )

✦Soft divergence  ,canceled by the 
contribution from the virtual diagram 

✦Collinear divergence   remains 
and this should be included in the   
as gluon formation happens in distant 
future.

y = 1

l2
⊥ → 0

D(z)

P(y) =
1 + y2

1 − y
✦ Splitting function: 

Formation time : τ− = 2q−/Q2 = 2q−y(1 − y)/l2
⊥

Real diagram
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Multiple emissions and vacuum DGLAP equation

dD(z, Q2)
dQ2

=
αs

2πQ2 ∫
1

z

dy
y

P+(y)D ( z
y

, Q2)

∫
Q2

0

dl2
⊥

l2
⊥

⟶ ∫
μ2

0

dl2
⊥

l2
⊥

+ ∫
Q2

μ2

dl2
⊥

l2
⊥

Absorb into bare fragmentation function 

D(z, Q2) = [1 +
αs(Q2)

2π ∫
Q2

μ2

dl2
0⊥

l2
0⊥

P+(y0) +
αs(Q2)

2π ∫
Q2

μ2

dl2
0⊥

l2
0⊥

P+(y0)
αs(l2

0⊥)
2π ∫

l2
0⊥

μ2

dl2
1⊥

l2
1⊥

P+(y1)  + . . . . .  ] * D(z, μ2)

+ + +
Q2 μ2

l0 l0 l1
l0 l1 l2

Q2 μ2 μ2Q2
l2
0⊥ l2

0⊥ l2
1⊥

DGLAP equation is integro-differential equation 
Requires Input fragmentation function at lower scale  μ2

Formulated by  
V. Gribov and L. Lipatov (1972) 
G. Altarelli and G. Parisi (1977) 

Yu. Dokshitzer (1977)

∫ P(y) * D(z) = ∫
1

z

dy
y

P+(y)D ( z
y )
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Factorization and parton energy loss in-medium 

                
dσAB→h+X or Jet+X

d2pTdy
∼ ∫ dxadxb  fA

a (xa, Q2) fB
b (xb, Q2) 

d ̂σ
d ̂t

D̃med
modified(z, Q2) +𝓞 (

Λ2
QCD

Q2 )

 pin

 xa =
Pa

PA

    Hadron 
or Jet

pT
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 xb =
Pb

PB

 z =
pT

pin

  Q2

Total cross section is a product of probabilities J̃med
modified(z, Q2)
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Jet evolution in QGP a multi-
scale phenomenon
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Jet evolution

High E, High Q phase: 
(Radiation dominant) 

High E, Low Q phase: 
(Scattering dominant) 

Hard 
 parton

High temperature Low temperature

Low E, Low Q phase: 
(Thermal partons) 

Low E, Low Q phase: 
(Thermal partons) 
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Jet evolution in QGP a multi-
scale phenomenon
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Jet evolution

High E, High Q phase: 
(Radiation dominant) 

High E, Low Q phase: 
(Scattering dominant) 

Hard 
 parton

High temperature Low temperature

Low E, Low Q phase: 
(Thermal partons) 

Low E, Low Q phase: 
(Thermal partons) 

Relevant theoretical framework 
High E, High Q: 
Higher-twist approach 
MATTER 

Low E, low Q: 
Strong coupling formalism 
AdS-CFT

High E, low Q: 
On-shell parton transport model 
AMY, BDMPS approach 
LBT, MARTINI
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Jet evolution in QGP a multi-
scale phenomenon
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Jet evolution

High E, High Q phase: 
(Radiation dominant) 

High E, Low Q phase: 
(Scattering dominant) 

Hard 
 parton

High temperature Low temperature

Low E, Low Q phase: 
(Thermal partons) 

Low E, Low Q phase: 
(Thermal partons) 

Outstanding questions: 
What is the microscopic 
structure of QGP ? Are there 
quasi-particles? 

How does jet energy thermalizes 
in the plasma? 

Jet substructure modifications? 

Modification to Quark-gluon  
fractions ? 

What can we learn about jet 
transport coefficients?
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JETSCAPE: Framework to simulate all aspects of heavy-ion collisions
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Multi-stage 
Jet Shower Evolution

Energy-momentum Deposition

JETSCAPE is available on GitHub: github.com/JETSCAPE

❑ Modular, extensible and task-based event generator 
❑ Framework is modular to “multi-stage”, “energy-loss”

Diagram by:

Y. Tachibana In this session, we focus on multi-stage jet energy loss formalism 

JETSCAPE pp19 tune   (arXiv:1910.05481) 
JETSCAPE framework (arXiv:1903.07706)

JETSCAPE AA               (arXiv:2204.01163) 

http://github.com/JETSCAPE
https://arxiv.org/pdf/1910.05481.pdf
https://arxiv.org/pdf/1903.07706.pdf
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JETSCAPE: Framework to simulate all aspects of heavy-ion collisions
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Multi-stage 
Jet Shower Evolution

Energy-momentum Deposition

JETSCAPE is available on GitHub: github.com/JETSCAPE

❑ Modular, extensible and task-based event generator 
❑ Framework is modular to “multi-stage”, “energy-loss”

Diagram by:

Y. Tachibana In this session, we focus on parton energy loss for light-flavors

Large- Q( > Q0)

MATTER

Radiation Dominated 
Virtuality ordered  

splitting

Higher-twist  
formalism

Small- Q( < Q0)

LBT

Scattering Dominated 
On-shell parton  

transport

Higher-twist  
formalism

MARTINI

AMY  
formalism

AdS/CFT

Diffusion  
into medium

 =4 super 
 Yang-Mills
𝒩

JETSCAPE pp19 tune   (arXiv:1910.05481) 
JETSCAPE framework (arXiv:1903.07706)

JETSCAPE AA               (arXiv:2204.01163) 

http://github.com/JETSCAPE
https://arxiv.org/pdf/1910.05481.pdf
https://arxiv.org/pdf/1903.07706.pdf
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Jet evolution in QGP a multi-
scale phenomenon
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Jet evolution

High E, High Q phase: 
(MATTER) 

High E, Low Q phase: 
(LBT, MARTINI) 

Hard 
 parton

High temperature Low temperature

Low E, Low Q phase: 
(Thermal partons) 

Low E, Low Q phase: 
(Thermal partons) 

Heavy quark energy loss: 
Talk by Wenkai Fan

Medium response to jets: 
Talk by Ismail Saudi 
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High virtuality phase 
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 Jet energy loss transport coefficients
❑ Factorized approach to jet evolution

dN
dydμ2

=
αs

2π
Pqg(y)

μ2 [1 + ∫
ξ+

o +τ+

ξ+
o

dξ+K(ξ+, ξ+
o , y, q+, μ2)];

K(ξ+, ξ+
o , y, q+, μ2) =

1
y(1 − y)μ2(1 + χ)2

2 − 2 cos ( ξ+ − ξ+
o

τ+ ) × {C ̂q−

qg ̂q + C ̂e−

qg ̂e + C ̂e−
2

qg ̂e2}

❑  Transport coefficient  :   
Average transverse momentum squared 

per unit length


     

�̂�

̂q( ⃗r, t) =
⟨ ⃗k 2

⊥⟩
L

∝ ⟨M |F+
⊥ (y−, y⊥)F+⊥(0) |M⟩

❑  Transport coefficient  :  


     

ê

̂e( ⃗r, t) =
⟨kz⟩

L
∝ ⟨M |∂−A+(y−, y⊥)A+(0) |M⟩

❑  Transport coefficient  :   

    

̂e2

̂e2( ⃗r, t) =
⟨k2

z ⟩
L

∝ ⟨M |F+−(y−, y⊥)F+−(0) |M⟩Higher-twist formalism: (collinear expansion)

→𝒒

→𝒒 +
→
𝒌

→
𝒌

Nucleon
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MATTER jet energy loss
❑ Modular All Twist Transverse-scattering Elastic-drag and Radiation 
❑ Based on in-medium DGLAP evolution equation

Formation time: τ− ∼ q−/Q2< k2
⊥ > ∼ ̂qτ− < < l2

⊥ ∼ Q2In limit:

Virtuality ordered emission approximation

++

Repeating single emission single scattering kernel

c.c.

Q2
1 ≥ Q2

2 ≥ Q2
3 . . . . .

Q1 Q2
Q3

k1

l2l1

k2

Vacuum contribution are dominant, and medium-induced radiations are treated as correction 

∂D (z, Q2, ζ−
i )

∂ log Q2
=

αS

2π

1

∫
z

dy
y [P+ (y) D ( z

y
, Q2, ζ−

i )  +

+ ( P(y)
y (1 − y) )

+

D ( z
y

, Q2, ζ−
i + τ−) ×

ζ−
i +τ−

∫
ζ−

i

dζ−
̂q (ζ−)
Q2 {2 − 2cos ( ζ− − ζ−

i

τ− )}

Vacuum term

Medium term

Phys. Rev. C 88, 014909 (2013) 
Phys. Rev. C 96, 024909 (2017)
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Low virtuality phase 
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LBT jet energy loss model
❑Based on linear Boltzmann transport equation

Evolution of phase-space distribution

pi . ∂fi(x, p) = Γel + Γinel

Elastic scattering:  LO   proccess2 ↔ 2

Inelastic scattering:  Single gluon emission 
rate using Higher Twist (depends on  )̂q

t-channel u-channel 

s-channel 

Γ12→34(p1) = ∫
d3p2

(2π)32E2

d3p3

(2π)32E3

d3p4

(2π)32E4
( f1 f2 − f3 f4)(2π)4δ4(p1 + p2 − p3 − p4) |𝓜12 → 34 |2

Γtotal = ∑
i

Γi;    Pel = ΓtotalΔt

1

2

3

4

❑Elastic scattering kernel

❑Total elastic scattering rate and probability
Phys. Rev. C 91, 054908 (2015) 
Phys. Rev. C 94, 014909 (2016)
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LBT jet energy loss model
❑ Inelastic scattering: Single gluon emission

Inelastic scattering:  Single gluon emission 
rate using Higher Twist (depends on  )̂q

❑  Medium-induced gluon radiation:

⟨Ng⟩ = Δt∫ dxdk2
⊥

dNg

dxdk2
⊥dt

dNg

dxdk2
⊥dt

=
2αsCA ̂qP(x)k4

⊥

π(k2
⊥ + x2m2)4

sin ( t − ti
2τf )

❑  Multiple scattering ( ) during each time step 
are allowed (Poisson distribution):

n

❑  Inelastic probability for medium-induced 
gluon radiation

P(n) =
⟨Ng⟩n

n!
e−⟨Ng⟩

Pinel = 1 − e−⟨Ng⟩

Phys. Rev. C 91, 054908 (2015) 
Phys. Rev. C 94, 014909 (2016)
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MARTINI jet energy loss model

JHEP 01, 030 (2003) 
JHEP 06, 030 (2002)

Momentum distribution of the hard parton is given by 
The following Fokker-Planck type rate equations

dP(p)
dt

= ∫
∞

−∞
dk (P(p + k)

dΓ(p + k, k)
dk

− P(p)
dΓ(p, k)

dk )

Phys. Rev. C 80:054913 (2009)

❑Modular Algorithm for Relativistic Treatment of heavy IoN Interactions

❑Based on Arnold-Moore-Yafffe (AMY) formalism 
    In limit of high temperature so QCD coupling is weak  g < < 1

❑  Landau-Pomeranchuk-Migal (LPM) effect: 
    Scattering centers act coherently during formation time when   
    Coherent scatterings  leads to the suppression of emissions 
    In AMY formalism LPM effect is calculated by resuming infinite ladder   
    diagrams  

τf > λMFP
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MARTINI jet energy loss model

dΓ
dk

(p, k, T) =
Csg2

16πp7
1

1 ± e−k/T
1

1 ± e−( p−k)/T

1 + (1 − x)2

x3(1 − x)2 q → qg

Nf
x2 + (1 − x)2

x2(1 − x)2 g → qq̄

1 + x4 + (1 − x)4

x3(1 − x)3 g → gg

The function   is the solution of the integral equation that depends on Collision kernel F(h, p, k)

C(q⊥) =
m2D

q2
⊥(q2

⊥ + m2
D)

,   m2
D =

g2
s T2

6
(2Nc + Nf)

× ∫
d2h

(2π)2
2h . Re F(h, p, k)

❑Transition rate for process 1->2 is given by

❑  Elastic scattering rates are same as LBT 
❑Quark-gluon conversion channel is also included
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❑  It is a weakly coupled approach to medium 
response

Medium partons kicked out the jet parton 
Propagates as a parton shower in jet shower

Sampled from the thermal distribution 
Subtracted from the total signal 

Recoil-hole: Medium response
Leading parton 
(After scattering)

Recoil 
(After scattering)

Sampled medium 
Parton

Leading  
parton

=
dpμ

dηdϕ
signal

dpμ

dηdϕ
jet shower

−
dpμ

dηdϕ
picked-up

❑Recoil Parton

❑Sampled medium parton (Holes)

Jet parton and recoil are hadronized together to form total signal 
Holes partons are hadronized separately and used to determine the correlated background to jet
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Inclusive jet cross section Jet Mass
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pp19 tune (arXiv:1910.05481) 
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 ⟹ ̂qHTL ⋅ f(Q2)Effective jet-quenching strength

Strong coherence effects are observed for high-  hadronspT

Jets and Leading hadron suppression at  sNN = 5.02 TeV
 ,  

where   in low virtuality phase

f(Q2) =
1 + c1 ln2(Q2

sw) + c2 ln4(Q2
sw)

1 + c1 ln2(Q2) + c2 ln4(Q2)

f(Q2) → 1



Amit Kumar (JETSCAPE Summer School 2022), July 29th, 2022  30

Pb+Pb at 2.76 TeV 
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Au+Au at 200 GeV 
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D(pT) =
1

Njet ∑
jets

dNtrk

dpch
T

pT
pjet

T

Shows sensitivity to coherence effects

Jet Fragmentation function
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Summary
❑Factorization of soft and hard scales 
❑Parton distribution function and Fragmentation function 
❑ Vacuum DGLAP equation and medium modified DGLAP 

equation 
❑ Basic review of jet energy loss in high virtuality and low 

virtuality phase 
❑ MATTER, LBT and MARTINI energy loss module

❑Wenkai Fan : Overview of heavy quark energy loss

Next talks in jet session:

❑ Ismail Soudi: Weakly-coupled and strongly-coupled approach of 
medium response 
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Thanks to all TA’s and Chairs


