

Jet

Jets in QCD medium

Amit Kumar McGill University, Canada July 29th, 2022

- □ Hard probes in heavy-ion collisions
- □ Factorization of soft and hard scales
- □ Scale dependence of Parton distribution function and Fragmentation function
- **Overview of JETSCAPE framework** Basic review of jet energy loss in high virtuality and low virtuality phase □ MATTER, LBT and MARTINI energy loss modules
- Recent results based on multi-stage jet energy loss (MATTER+LBT) approach

Outline

Jets and leading hadron production in heavy-ion collisions

Proton-Proton Collisions

 \Box Initial state hard scattering \Longrightarrow leading hadron and Jets

 \Box Jets are collimated spray of soft and hard hadrons in a narrow cone \Longrightarrow Proxy for the hard parton (After scattering)

Perturbative QCD can be used to high precision

Heavy-ion Collisions

Hard probes: Evidence for strongly interacting QGP

\Box Nuclear modification factor R_{AA}

$$R_{AA} \equiv \frac{d^2 N^A}{d^2 N^{pp}/dy}$$

 \Box Hadron R_{AA} is less than 1, whereas isolated photon and Z^0 boson R_{AA} is unity.

The plasma is strongly interacting

Amit Kumar (JETSCAPE Summer School 2022), July 29th, 2022

 $AA/dydp_{\rm T}$ $ydp_{\rm T} \times \langle N_{coll}^{AA} \rangle$

Factorization of short and long-distance physics

- Work due to Collins, Soper,
 Sterman for pp collision
- Factorization assumed for High p_T hadron/Jet production in Heavy-ion Collision

Total cross section is a product of probabilities

Scale (Q^2) evolution of parton distribution function f(x)

Proton structure is a scale dependent phenomenon

Scale (Q^2) evolution of Fragmentation function f(x)

Initial State Hard scattering produces are highly virtual objects

- □ The hard parton undergo radiative splitting which leads to decrease in the virtuality of the hard parton
- Emission process stops when the offshell ness becomes small ($Q^2 \approx 1 \text{ GeV}^2$), In this regime perturbative description is no longer valid
- Partons undergo hadronization detailed mechanism is unknown: Fragmentation function, **PYTHIA** string fragmentation

Kinematic variables in light-cone coordinate system

Off-shellness: $q^2 = 2q^+q^- - q_\perp^2 - m_0^2$

Example: Particle traveling in -z direction $\implies q^{-1}$

Amit Kumar (JETSCAPE Summer School 2022), July 29th, 2022

We know

 $k^2 = 0$

 $p^2 = 0$

 $q^2 = 2q^+q^- = Q^2$

 $q^{\mu} = k^{\mu} + p^{\mu}$

$$\gg q^+; q_\perp = 0$$

 $2q^-y$

Imaginary part of the amplitude of forward scattering diagram is product of the diagram obtained by cutting the internal line

Forward scattering diagram

UCut-line represents final state Propagators on the cut-line are put on-shell

p

Amit Kumar (JETSCAPE Summer School 2022), July 29th, 2022

Optical theorem

$$\frac{1}{(p)^2 - |\overrightarrow{p}|^2} \Longrightarrow \delta\left[(p^0)^2 - |\overrightarrow{p}|^2\right]$$

Fragmentation function: Single emission diagram and virtual correction

$$\frac{d\sigma}{\sigma_0} = \frac{\alpha_s(Q^2)}{2\pi} \int_0^{Q^2} \frac{dl_\perp^2}{l_\perp^2} \int_z^1 \frac{dy}{y} P_+(y) D\left(\frac{z}{y}\right)$$

Formation time : $\tau^- = 2q^-/Q^2 = 2q^-y(1-y)/l_{\perp}^2$

Amit Kumar (JETSCAPE Summer School 2022), July 29th, 2022

Virtual diagram

Splitting function: $P(y) = \frac{1 + y^2}{1 - y}$

- **\bullet** Soft divergence y = 1, canceled by the contribution from the virtual diagram
- **\bigstar** Collinear divergence $l_{\perp}^2 \rightarrow 0$ remains

and this should be included in the D(z) as gluon formation happens in distant future.

Multiple emissions and vacuum DGLAP equation

$$\int_{0}^{Q^{2}} \frac{dl_{\perp}^{2}}{l_{\perp}^{2}} \longrightarrow \int_{0}^{\mu^{2}} \frac{dl_{\perp}^{2}}{l_{\perp}^{2}} + \int_{\mu^{2}}^{Q^{2}} \frac{dl_{\perp}^{2}}{l_{\perp}^{2}}$$
Aboorb into b

$$D(z,Q^{2}) = \left[1 + \frac{\alpha_{s}(Q^{2})}{2\pi} \int_{\mu^{2}}^{Q^{2}} \frac{dl_{0\perp}^{2}}{l_{0\perp}^{2}} P_{+}(y_{0}) + \frac{\alpha_{s}(Q^{2})}{2\pi} \int_{\mu^{2}}^{Q^{2}} \frac{dl_{0\perp}^{2}}{l_{0\perp}^{2}} P_{+}(y_{0}) \frac{\alpha_{s}(l_{0\perp}^{2})}{2\pi} \int_{\mu^{2}}^{l_{0\perp}^{2}} \frac{dl_{1\perp}^{2}}{l_{1\perp}^{2}} P_{+}(y_{1}) + \dots \right] * D(z,\mu^{2})$$

$$\int_{\mu^{2}}^{P(y)*D(z)} = \int_{z}^{1} \frac{dy}{y} P_{+}(y_{0}) \left(\frac{z}{y}\right) \frac{du^{2}}{y} \left(\frac{z}{y}\right) \frac{du^{2}}{z} \left(\frac{z}{z}\right) \frac{du^{2}}{z} \left$$

$$\frac{dD(z,Q^2)}{dQ^2} = \frac{\alpha_s}{2\pi Q^2} \int_z^1 \frac{dy}{y} P_+(y) D\left(\frac{z}{y},Q^2\right) \qquad \text{DG}$$

Amit Kumar (JETSCAPE Summer School 2022), July 29th, 2022

Formulated by V. Gribov and L. Lipatov (1972) G. Altarelli and G. Parisi (1977) Yu. Dokshitzer (1977)

Absorb into bare fragmentation function

GLAP equation is integro-differential equation equires Input fragmentation function at lower scale μ^2

Factorization and parton energy loss in-medium

$$\frac{d\sigma^{AB \to h+X \text{ or Jet}+X}}{d^2 p_{\mathrm{T}} dy} \sim \int dx_a dx_b \int f_a^A(x_a, Q^2) f_b^A$$

Total cross section is a product of probabilities

Low E, Low Q phase: (Thermal partons)

High E, High Q phase: (Radiation dominant)

High temperature

Low E, Low Q phase: (Thermal partons)

Low temperature

Amit Kumar (JETSCAPE Summer School 2022), July 29th, 2022

High E, Low Q phase: (Scattering dominant)

Low E, Low Q phase: (Thermal partons)

High E, High Q phase: (Radiation dominant)

High temperature

Low E, Low Q phase: (Thermal partons)

Low temperature

Amit Kumar (JETSCAPE Summer School 2022), July 29th, 2022

High E, Low Q phase: (Scattering dominant)

Relevant theoretical framework High E, High Q: Higher-twist approach MATTER

High E, low Q: **On-shell parton transport model AMY, BDMPS** approach **LBT, MARTINI**

Low E, low Q: **Strong coupling formalism** AdS-CFT

Low E, Low Q phase: (Thermal partons)

High E, High Q phase: (Radiation dominant)

High temperature

Low E, Low Q phase: (Thermal partons)

Low temperature

Amit Kumar (JETSCAPE Summer School 2022), July 29th, 2022

High E, Low Q phase: (Scattering dominant)

Outstanding questions: What is the microscopic structure of QGP ? Are there quasi-particles?

How does jet energy thermalizes in the plasma?

Jet substructure modifications?

Modification to Quark-gluon fractions?

What can we learn about jet transport coefficients?

JETSCAPE: Framework to simulate all aspects of heavy-ion collisions

□ Modular, extensible and task-based event generator □ Framework is modular to "multi-stage", "energy-loss"

JETSCAPE is available on GitHub: GitHub github.com/JETSCAPE

Y. Tachibana

Amit Kumar (JETSCAPE Summer School 2022), July 29th, 2022

 JETSCAPE framework (arXiv:1903.07706) **JETSCAPE** pp19 tune (<u>arXiv:1910.05481</u>) JETSCAPE AA (arXiv:2204.01163)

JETSCAPE: Framework to simulate all aspects of heavy-ion collisions

□ Modular, extensible and task-based event generator □ Framework is modular to "multi-stage", "energy-loss"

Diagram by: Y. Tachibana

In this session, we focus on parton energy loss for light-flavors

Amit Kumar (JETSCAPE Summer School 2022), July 29th, 2022

 JETSCAPE framework (arXiv:1903.07706) **JETSCAPE** pp19 tune (arXiv:1910.05481) JETSCAPE AA (arXiv:2204.01163)

Low E, Low Q phase: (Thermal partons)

High E, High Q phase: (MATTER)

High temperature

Low E, Low Q phase: (Thermal partons)

Low temperature

Amit Kumar (JETSCAPE Summer School 2022), July 29th, 2022

High E, Low Q phase: (LBT, MARTINI)

Heavy quark energy loss: Talk by Wenkai Fan

Medium response to jets: Talk by Ismail Saudi

High virtuality phase

Jet energy loss transport coefficients

□ Factorized approach to jet evolution

Higher-twist formalism: (collinear expansion)

$$\frac{dN}{dyd\mu^2} = \frac{\alpha_s}{2\pi} \frac{P_{qg}(y)}{\mu^2} \left[1 + \int_{\xi_o^+}^{\xi_o^+ + \tau^+} d\xi^+ K(\xi^+, \xi_o^+, y, q^+, \mu^2) \right];$$

$$K(\xi^+, \xi_o^+, y, q^+, \mu^2) = \frac{1}{y(1-y)\mu^2(1+\chi)^2} \left\{ 2 - 2\cos\left(\frac{\xi^+ - \xi_o^+}{\tau^+}\right) \right\} \times \left\{ C_{qg}^{\hat{q}^-} \hat{q} + C_{qg}^{\hat{e}^-} \hat{e}_2 \right\}$$

Amit Kumar (JETSCAPE Summer School 2022), July 29th, 2022

Transport coefficient \hat{q} : Average transverse momentum squared per unit length

$$\hat{q}(\vec{r},t) = \frac{\langle k_{\perp}^2 \rangle}{L} \propto \langle M | F_{\perp}^+(y^-,y_{\perp})F^{+\perp}(0) | M \rangle$$

Transport coefficient $\stackrel{\wedge}{e}$:

 $\hat{e}(\vec{r},t) = \frac{\langle k_z \rangle}{L} \propto \langle M | \partial^- A^+(y^-, y_\perp) A^+(0) | M \rangle$

Transport coefficient \hat{e}_2 :

 $\hat{e}_2(\vec{r},t) = \frac{\langle k_z^2 \rangle}{L} \propto \langle M | F^{+-}(y^-, y_\perp) F^{+-}(0) | M \rangle$

MATTER jet energy loss

Output All Twist Transverse-scattering Elastic-drag and Radiation □ Based on in-medium DGLAP evolution equation

In limit:
$$\langle k_{\perp}^{2} \rangle \sim \hat{q}\tau^{-} \langle l_{\perp}^{2} \sim Q^{2}$$
 Formation t

$$\frac{\partial D(z, Q^{2}, \zeta_{i}^{-})}{\partial \log Q^{2}} = \frac{\alpha_{S}}{2\pi} \int_{z}^{1} \frac{dy}{y} \left[P_{+}(y) D\left(\frac{z}{y}, Q^{2}, \zeta_{i}^{-}\right) + Vacuum term \right]$$

+
$$\left(\frac{P(y)}{y(1-y)}\right)_{+} D\left(\frac{z}{y}, Q^2, \zeta_i^- + \tau^-\right) \times \int_{\zeta_i^-}^{\zeta_i^- + \tau^-} d\zeta^- \frac{\hat{q}(\zeta^-)}{Q^2} \left\{2 - \frac{\zeta_i^-}{\zeta_i^-}\right\}$$

Medium term

Phys. Rev. C 88, 014909 (2013) Phys. Rev. C 96, 024909 (2017)

Amit Kumar (JETSCAPE Summer School 2022), July 29th, 2022

$Q_1^2 \ge Q_2^2 \ge Q_3^2 \dots$

time: $\tau^- \sim q^-/Q^2$

Repeating single emission single scattering kernel

Virtuality ordered emission approximation

Vacuum contribution are dominant, and medium-induced radiations are treated as correction

Low virtuality phase

LBT jet energy loss model

□ Based on linear Boltzmann transport equation

Evolution of phase-space distribution

$$p_i \cdot \partial f_i(x,p) = \Gamma_{el} + \Gamma_{inel}$$

Elastic scattering: LO $2 \leftrightarrow 2$ process

Inelastic scattering: Single gluon emission rate using Higher Twist (depends on \hat{q})

Elastic scattering kernel

$$\Gamma_{12\to 34}(p_1) = \int \frac{d^3 p_2}{(2\pi)^3 2E_2} \frac{d^3 p_3}{(2\pi)^3 2E_3} \frac{d^3 p_4}{(2\pi)^3 2E_4} (f_1 f_2 - f_3 f_4)$$

Total elastic scattering rate and probability $\Gamma_{total} = \sum_{i} \Gamma_{i}; \quad P_{el} = \Gamma_{total} \Delta t$

Amit Kumar (JETSCAPE Summer School 2022), July 29th, 2022

Phys. Rev. C 91, 054908 (2015) Phys. Rev. C 94, 014909 (2016)

LBT jet energy loss model

□ Inelastic scattering: Single gluon emission

Inelastic scattering: Single gluon emission rate using Higher Twist (depends on \hat{q})

□ Medium-induced gluon radiation:

$$\langle N_g \rangle = \Delta t \int dx dk_{\perp}^2 \frac{dN_g}{dx dk_{\perp}^2 dt}$$

$$\frac{dN_g}{dxdk_{\perp}^2dt} = \frac{2\alpha_s C_A \hat{q} P(x)k_{\perp}^4}{\pi(k_{\perp}^2 + x^2m^2)^4} \sin\left(\frac{t - t_i}{2\tau_f}\right)$$

Amit Kumar (JETSCAPE Summer School 2022), July 29th, 2022

Multiple scattering (n) during each time step are allowed (Poisson distribution):

$$P(n) = \frac{\langle N_g \rangle^n}{n!} e^{-\langle N_g \rangle}$$

Inelastic probability for medium-induced gluon radiation

$$P_{inel} = 1 - e^{-\langle N_g \rangle}$$

Phys. Rev. C 91, 054908 (2015) Phys. Rev. C 94, 014909 (2016)

MARTINI jet energy loss model

□ Modular Algorithm for Relativistic Treatment of heavy IoN Interactions

Momentum distribution of the hard parton is given by The following Fokker-Planck type rate equations

$$\frac{dP(p)}{dt} = \int_{-\infty}^{\infty} dk \left(P(p+k) \frac{d\Gamma(p+k,k)}{dk} - P(p) \frac{d\Gamma(p+k,k)}{dk} \right)$$

- Based on Arnold-Moore-Yafffe (AMY) formalism In limit of high temperature so QCD coupling is weak g < < 1
- □ Landau-Pomeranchuk-Migal (LPM) effect: Scattering centers act coherently during formation time when $\tau_f > \lambda_{MFP}$ **Coherent scatterings leads to the suppression of emissions** In AMY formalism LPM effect is calculated by resuming infinite ladder diagrams

- Phys. Rev. C 80:054913 (2009)

 $d\Gamma(p,k)$ dk

JHEP 01, 030 (2003) JHEP 06, 030 (2002)

MARTINI jet energy loss model

□ Transition rate for process 1->2 is given by

$$\frac{d\Gamma}{dk}(p,k,T) = \frac{C_s g^2}{16\pi p^7} \frac{1}{1 \pm e^{-k/T}} \frac{1}{1 \pm e^{-(p-k)/T}} \begin{cases} \frac{1+(1-x^3)}{x^3(1-x^3)} \\ N_f \frac{x^2+x^2}{x^2(1-x^3)} \\ \frac{1+x^4+x^4}{x^3(1-x^3)} \end{cases}$$

The function F(h, p, k) is the solution of the integral equation that depends on Collision kernel

$$C(q_{\perp}) = \frac{m^2 D}{q_{\perp}^2 (q_{\perp}^2 + m_D^2)}, \quad m_D^2 = \frac{g_s^2 T^2}{6} (2N_c + N_f)$$

□ Elastic scattering rates are same as LBT **Quark-gluon conversion channel is also included**

Recoil-hole: Medium response

□ It is a weakly coupled approach to medium response

□ Sampled medium parton (Holes)

Medium partons kicked out the jet parton **Propagates as a parton shower in jet shower**

Recoil Parton

Sampled from the thermal distribution Subtracted from the total signal

Jet parton and recoil are hadronized together to form total signal

Amit Kumar (JETSCAPE Summer School 2022), July 29th, 2022

Holes partons are hadronized separately and used to determine the correlated background to jet

JETSCAPE pp19 tune

Optimized value of parameters:

- ← Lambda QCD: $\Lambda_{OCD} = 200 MeV$
- + Initial virtuality (off-shellness) of the parton after hard scattering: $Q_{in} = \frac{P_T}{2}$

Inclusive jet cross section

Jet shape

Amit Kumar (JETSCAPE Summer School 2022), July 29th, 2022

Jet Mass

Jets and Leading hadron suppression at $\sqrt{s}_{NN} = 5.02 \text{ TeV}$

Effective jet-quenching strength $\implies \hat{q}_{\rm HTL} \cdot f(Q^2)$

Strong coherence effects are observed for high- p_T hadrons

Amit Kumar (JETSCAPE Summer School 2022), July 29th, 2022

$$f(Q^2) = \frac{1 + c_1 \ln^2(Q_{\rm sw}^2) + c_2 \ln^4(Q_{\rm sw}^2)}{1 + c_1 \ln^2(Q^2) + c_2 \ln^4(Q^2)},$$

where $f(Q^2) \rightarrow 1$ in low virtuality phase

Collision energy dependence of Jet and Hadron R_{AA}

Amit Kumar (JETSCAPE Summer School 2022), July 29th, 2022

Au+Au at 200 GeV

Jet Fragmentation function

Summary

□Factorization of soft and hard scales □Parton distribution function and Fragmentation function □ Vacuum DGLAP equation and medium modified DGLAP equation

- □ Basic review of jet energy loss in high virtuality and low virtuality phase
- □ MATTER, LBT and MARTINI energy loss module

Next talks in jet session:

Wenkai Fan : Overview of heavy quark energy loss

Ismail Soudi: Weakly-coupled and strongly-coupled approach of medium response

Thanks to all TA's and Chairs

