RIVET analysis for heavy-ion physics

JETSCAPE Workshop Aug 05, 2022

Antonio Silva

<u>antonio.silva@cern.ch</u> University of Tennessee - Knoxville

Outline

- Rivet and analysis preservation
 - O What is Rivet?
 - Analysis preservation

- Recent developments in Rivet for heavy ions
 - What Rivet can already do
- A brief demonstration

Rivet and analysis preservation

What's Rivet?

Robust Independent Validation of Experiment and Theory (Rivet)

Analysis Code Repository

Comparison between theory and data

Search for data EXPERIMENT_YEAR_I<InspireNumber>

Relatively easy to use

What's Rivet?

Analysis preservation

How Rivet can contribute to analysis preservation

- The details related to the methods an analysis uses are not always well described in the article
 - Even internal analysis notes could be incomplete
 - Recover the tiny details of an analysis after many years can be very time consuming!
- For people outside experiments, it is not clear how observables and estimators are defined
 - Ex. multiplicity, centrality, primary particles, etc
- Convenient for theoreticians interested in testing models
 - Knowledge of the large number of experimental methods is not required

Recent developments in Rivet for heavy ions

What Rivet can already do

ALICE primary particles definition (from https://cds.cern.ch/record/2270008/files/cds.pdf)

A primary particle is a particle with a mean proper lifetime τ larger than $1\,\mathrm{cm/c}$, which is either a) produced directly in the interaction, or b) from decays of particles with τ smaller than $1\,\mathrm{cm/c}$, restricted to decay chains leading to the interaction.

- The definition of primary particles is experiment-dependent
- Currently, some of the ALICE estimators (forward pseudorapidity) for multiplicity/centrality are already available
 - pp: charged-particle multiplicity in the acceptance of the VO
 - p-Pb: charged-particle multiplicity in the acceptance of the VOA
 - Pb-Pb: charged-particle multiplicity in the acceptance of the VO

What Rivet can already do

Centrality determination in Rivet

- A calibration file has to be produced before running the analysis
 - Each event generator needs a different calibration
 - A dedicated plugin is used to create the calibration files

• The calibration creates a probability density of number of charged particles per event in the

acceptance of the V0 detector

$$\circ$$
 2.8 < η_{VOA} < 5.1 and -3.7 < η_{VOC} < -1.7

What Rivet can already do

Centrality determination in Rivet

- The calibration file is given to Rivet as a pre-load
- During the analysis run, the centrality is calculated in each event

- Centrality is calculated in a way analogous to what is done in the experiment
- Simple implementation
- Previous knowledge of experimental methods is not necessary
- Not a black box! Code is open and methods can be understood

Centrality for STAR and PHENIX

- The centrality determination in Rivet is based on the same methods used by the respective experiments
- Critical feature for the implementation of heavy-ion analyses in Rivet

Centrality for STAR and PHENIX

- The centrality determination in Rivet is based on the same methods used by the respective experiments
- **PH***ENIX

• Critical feature for the implementation of heavy-ion analyses in Rivet

A brief demonstration

A initial template analysis can be created with

```
rivet-mkanalysis <EXPERIMENT>_<YEAR>_I<INSPIRE_NUMBER>
```

In this demonstration we are going to use

```
rivet-mkanalysis ALICE_2021_I1797443
```

- https://arxiv.org/abs/2005.11120
- https://www.hepdata.net/record/ins1797443
- Rivet will created a template analysis and download the data from HepData
- We then delete everything inside analyze() and finalize(). In init() we keep only

```
const FinalState fs(Cuts::abseta < 4.9);
book(_h["AAAA"], 1, 1, 1);
```

```
class ALICE 2021 I1797443 : public Analysis {
  RIVET DEFAULT ANALYSIS CTOR(ALICE 2021 I1797443);
   book( h["AAAA"], 1, 1, 1);
 void analyze(const Event& event) {
  map<string, HistoIDPtr> h;
 map<string, Profile1DPtr> p;
  map<string, CounterPtr> c;
```

The class ALICE_2021_I1797443 insideALICE_2021_I1797443.cc will look like this

Inside init():

- Add the particle selection from the paper
 - We also add a selection to have only pions
- declare it and associate a string to the object
- Change string of the histogram
- Book a counter for the number of events

```
/// Book histograms and initialise projections before the run
void init() {
  const FinalState fs(Cuts::absrap < 0.5 && Cuts::abscharge > 0 && Cuts::abspid == 211);
  declare(fs, "fs");
  book(_h["ChPionPt"], 1, 1, 1);
  book(_c["sow"], "sow");
}
```

Inside analyze():

- Add FinalState using the string that is associated to the FinalState projection
- Add entry to counter (no argument)
- Loop over particles (pions)
- Fill histogram with particle p_{τ} in GeV/c

```
/// Perform the per-event analysis
void analyze(const Event& event) {
   const FinalState fs = applyProjection<FinalState>(event, "fs");
   const Particles particles = fs.particles();
   _c["sow"]->fill();
   for(auto p : particles)
   {
        _h["ChPionPt"]->fill(p.pT()/GeV);
   }
}
```

Inside finalize():

Scale the histogram by the number of events

```
/// Normalise histograms etc., after the run
void finalize() {
    _h["ChPionPt"]->scaleW(1./_c["sow"]->sumW());
}
```

Rivet analysis

• Compile your code with

rivet-build RivetALICE_2021_I1797443.so ALICE_2021_I1797443.cc

Run Rivet

Rivet --pwd -a ALICE_2021_I1797443 -o Rivet.yoda HepMC_File.hepmc

• Make plots with

rivet-mkhtml --pwd Rivet.yoda

Centrality

```
/// Book histograms and initialise projections before the run
void init() {
   declareCentrality(ALICE::V0MMultiplicity(), "ALICE_2015_PBPBCentrality", "V0M","V0M");
}
```

init()

- Centrality declaration
- Depends on experiment

```
/// Perform the per-event analysis
void analyze(const Event& event) {

   // The centrality projection.
   const CentralityProjection& centProj = apply<CentralityProjection>(event,"VOM");

   // The centrality.
   const double cent = centProj();
}
```

analyze()

- Get the centrality projection
- Get the centrality of the event

Centrality

In heavy-ions, in order to get the centrality of the events, some additional parameters are needed

rivet --pwd -p calibration.yoda -a ANALYSIS_NAME:cent=GEN -o Rivet.yoda HepMC_File.hepmc

File containing particle multiplicity or impact parameter distributions

- \rightarrow Calibration file
 - Depends on model, beam, energy

Centrality strategy

Summary

Rivet — Experimental analysis for MC repository

HepData
 Repository of data

HepMC — Interface between MC and analyses

 Data and analysis preservation

 Easy comparison of data and theory

- Recipe given by experiments
 - Maximum fidelity to methods used in the measurement
- Other models will be compared using the same code

Where to find Rivet: https://gitlab.com/hepcedar/rivet

Need help? rivet-support@cern.ch