

The SMASH transport approach

Introduction into transport and hybrid approaches and their usage within JETSCAPE

Jan Staudenmaier at the JETSCAPE Summer School 2022

July 27 2022

Separation of hard and soft physics

A fountain of water (*hard jet*) shooting through a dense fog (*soft bulk*)

Separation of hard and soft physics

- In heavy-ion collisions ...
 - *hard* physics about high momentum particles ≥ 5 10 GeV
 → Perturbative QCD, Jets, ...
 - soft or bulk physics about low momentum particles ≤ 5 10 GeV
 → Statistical Models, Hydrodynamics, …
- Separate theoretical description of the different regimes

JETSCAPE Flow

Separation of hard and soft sector

Topic of this lecture

by J. Mulligan

JETSCAPE Modules

Separation of hard and soft sector

Topic of this lecture

by J. Mulligan

The approach for soft physics At high energies: Hybrid models

Hybrid approaches

Relativistic Hydrodynamics

 $\partial_{\mu}T^{\mu
u}=0$, $\partial_{\mu}j^{\mu}=0$

- Conservation laws
- Local thermal equilibrium
- Macroscopic
- Equation of state encodes phase transition
- Applicable at high densities mean free path ≪ system size

Hadron Transport

$$\frac{\partial f}{\partial t} + \frac{\vec{p}}{m} \nabla f + \vec{F} \frac{\partial f}{\partial \vec{p}} = \left(\frac{\partial f}{\partial t}\right)_{\text{coll}}$$

- Boltzmann equation
- Non-equilibrium
- Microscopic
- Hadronic (or partonic) degrees
 of freedom
- Applicable at low/dilute system mean free path $\gg \lambda_{\text{Compton}}$

Different regions of applicability 💽 Hybrid approach

Hybrid approaches

Relativistic Hydrodynamics

$$\partial_{\mu}T^{\mu
u}=0$$
, $\partial_{\mu}j^{\mu}=0$

- Conservation laws
- Local thermal equilibrium
- Macroscopic
- Equation of state encodes phase transition
- Applicable at high densities mean free path ≪ system size

Hadron Transport

$$\frac{\partial f}{\partial t} + \frac{\vec{p}}{m} \nabla f + \vec{F} \frac{\partial f}{\partial \vec{p}} = \left(\frac{\partial f}{\partial t}\right)_{\text{coll}}$$

- Non-equilibrium
- Microscopic
- Hadronic (or partonic) degrees of freedom
- Applicable at low/dilute system mean free path $\gg \lambda_{\text{Compton}}$

(Ideal) hydrodynamic equations can be derived from Boltzmann equation assuming equilibrium (distribution)

Visualization of transport approach Pb-Pb at 17.3 GeV

Simple idea: Particles propagate, interact and decay ... but devil is in all the details

Hadronic transport approach SMASH

Theoretical Foundation

non-relativistic version

• Transport approaches are based on the **Boltzmann equation**

- Time evolution of particle density distribution function $f_i(\vec{r}, \vec{p}, t)$ for each species *i*
- *f* is the number of particles per phase space cell $dN_i = f_i(\vec{r}, \vec{p}, t) d^3r d^3p$
- Right-hand side: Collision Integral (next slide)
- Neglect quantum effects like interference and assume space and time span of collisions is small compared to mean free path

Collision Integral

• Change of particle number dN in phase space cell d^3rd^3p

$$\frac{d}{dt}N(t,r,p) = dN_{coll}(p', \dots \rightarrow p, \dots) - dN_{coll}(p, \dots \rightarrow p', \dots)$$
Gain Term
Loss Term
$$for 2-to-2 \text{ scatterings, one gets}$$
the integral:
$$\left(\frac{\partial f}{\partial t}\right)_{coll} = \int \frac{d^3p_2}{(2\pi)^3} (f_1'f_2' - f_1f_2)v_{rel} \int d\sigma$$
Input from quantum field
theory through matrix element
$$\sigma_{12 \rightarrow 1'2'} = \frac{1}{2E_1} \frac{1}{2E_2} \frac{1}{v_{rel}} \frac{1}{S_{1'2'}} \int \frac{d^3p_1'}{(2\pi)^3 2E_1'} \frac{d^3p_2'}{(2\pi)^3 2E_2'}$$

$$\times \frac{|\mathcal{M}_{12 \rightarrow 1'2'}|^2}{(2\pi)^4 \delta^{(4)}(P_1 + P_2 - P_1' - P_2')},$$

Solving the Boltzmann equation

Let's solve the equation then, right?

. . .

- In a realistic scenarios want to describe interaction between more than 100 hadron species (π, ρ, Κ, a₂, f₁, φ, Ν, Δ, …)
- Need to solve the coupled system of integro-differential equations with collision terms for any interactions between the particles

$$Df_{\pi} = I_{coll}(f_{\pi}, f_N, f_{\Delta}, \dots)$$

$$Df_N = I_{coll}(f_{\pi}, f_N, f_{\Delta}, \dots)$$

$$Df_{\Delta} = I_{coll}(f_{\pi}, f_N, f_{\Delta}, \dots)$$

$$(D = \frac{d}{dt})$$

 Generally impossible analytically Seed numeric Monte-Carlo approach with an effective description of the different equations terms

Particle evolution

$$\frac{\partial f}{\partial t} + \frac{\vec{p}}{m}\nabla f + \vec{F}\frac{\partial f}{\partial \vec{p}} = \left(\frac{\partial f}{\partial t}\right)_{\text{coll}}$$

- Propagation: Particles are propagated according to their momenta along straight lines (assuming no potentials) free streaming term
- **Collisions**: When particles are close → perform earliest reaction *collision term*
- Geometric collision criterions (usually default in transport approaches)
 - $d_T \leq \sqrt{\sigma/\pi}$ (limited to binary collisions)
 - Time of closest approach → Time-sorting depends on frame (Issues with Lorentz-invariance)
 - Kodama criterion improves Lorentz-invariance
- Stochastic collision criterion
 - Lorentz-invariant collision probability for particles in same phase space cell
 - Allows for multi-particle reaction

Treatment of potentials *external force term* **BUU and QMD approaches**

- **Boltzmann-Uhling-Uhlenbeck** (BUU) approaches ullet
 - f represented by testparticles: $N \rightarrow NN_{\text{Test}}, \sigma \rightarrow \sigma/N_{\text{Test}}$
 - Density dependent mean-field potentials $U(\rho)$ $\left| \frac{d\vec{p}}{dt} = -\nabla_{\vec{r}} U \right|$

- Solves Boltzmann equations in the limit of $N_{\text{Test}} \rightarrow \infty$
- Quantum Molecular Dynamics (QMD) approach
 - Particles are Gaussian wave packets
 - Potentials are sum of pairwise potentials
 - Solves many-body Hamiltonian (not based on an equation for f)

Application of transport approaches

Non-equilibrium systems of microscopic particles

Hybrid (JETSCAPE)

Standard approach at high energies

- Non-equilibrium initial evolution
- Viscous hydrodynamics
- Hadronic rescattering

• Two regimes with well-established approaches (split at $\sqrt{s} \approx 20$ GeV)

In Addition

- Approaches with partons cover full energy range (e.g. AMPT, PHSD)
- Studies of neutrino collision with e.g. GiBUU
- Air-shower from cosmic rays (UrQMD, SMASH)

Standard approach at low energies

- Hadronic transport approaches
- Resonance dynamics
- Nuclear potentials

Pure Transport evolution

Jan Staudenmaier

History of hadronic transport approaches

Successfully applied for decades

<u>SMASH</u>

- First C++ code in this historical chain written from scratch taking most successful aspects of existing approaches
- Goal: Reference for hadronic system with vacuum properties

Simulating Many Accelerated Strongly-interacting Hadrons

- Newer hadronic transport approach for dilute non-equilibrium stages of HIC and low energy collisions
- BUU-type approach: Uses the Testparticle Method $N \rightarrow NN_{\text{Test}}$
- Geometric collision criterion as default: $d_T \leq \sqrt{\sigma/\pi}$ As in UrQMD Recent addition: Stochastic collision criterion for multi-particle interactions
- Includes HepMC3 and ROOT output with newest release SMASH-2.2
- Open Source on Github

smash

Initial conditions

Au+Au at E_{kin} = 1.23A GeV Impact: 0.0 fm Time: -0 fm

Collider - elementary or AA collisions

Box - infinite matter

List - Afterburner of hydrodynamics

Degrees of freedom

Hadrons

N	Δ	٨	Σ	Ξ	Ω	Unflavored				Strange	see also
N ₉₃₈	Δ ₁₂₃₂	Λ ₁₁₁₆	Σ ₁₁₈₉	Ξ ₁₃₂₁	Ω ⁻ 1672	π ₁₃₈	f _{0 980}	f _{2 1275}	π 2 1670	K ₄₉₄	particles.txt
N 1440	Δ ₁₆₂₀	Λ_{1405}	Σ ₁₃₈₅	Ξ ₁₅₃₀	Ω ⁻ 2250	π ₁₃₀₀	f _{0 1370}	f ₂ ′ ₁₅₂₅		K* ₈₉₂	
N ₁₅₂₀	Δ ₁₇₀₀	Λ ₁₅₂₀	Σ ₁₆₆₀	Ξ ₁₆₉₀		π_{1800}	f _{0 1500}	f _{2 1950}	ρ _{3 1690}	K _{1 1270}	
N ₁₅₃₅	Δ ₁₉₀₀	Λ_{1600}	Σ ₁₆₇₀	Ξ ₁₈₂₀			f _{0 1710}	f _{2 2010}		K _{1 1400}	
N ₁₆₅₀	Δ ₁₉₀₅	Λ_{1670}	Σ ₁₇₅₀	Ξ1950		η ₅₄₈		f _{2 2300}	Фз 1850	K* ₁₄₁₀	
N ₁₆₇₅	Δ ₁₉₁₀	Λ_{1690}	Σ1775	Ξ2030		ŋ ´958	a 0 980	f _{2 2340}		K ₀ * ₁₄₃₀	
N ₁₆₈₀	Δ ₁₉₂₀	Λ_{1800}	Σ ₁₉₁₅			η 1295	a 0 1450		a _{4 2040}	K ₂ * ₁₄₃₀	
N ₁₇₀₀	Δ ₁₉₃₀	Λ_{1810}	Σ ₁₉₄₀			η 1405		f _{1 1285}		K* ₁₆₈₀	
N ₁₇₁₀	Δ ₁₉₅₀	Λ ₁₈₂₀	Σ ₂₀₃₀			η 1475	ф1019	f _{1 1420}	f _{4 2050}	K _{2 1770}	
N ₁₇₂₀		Λ ₁₈₃₀	Σ2250				ф1680			K ₃ * ₁₇₈₀	
N ₁₈₇₅		Λ_{1890}				σ_{800}		a _{2 1320}		K _{2 1820}	
IN 1900		Λ ₂₁₀₀					h _{1 1170}			K4 [*] 2045	
N1990		Λ ₂₁₁₀				ρ ₇₇₆		π_{11400}			
N2060		Λ ₂₃₅₀				ρ ₁₄₅₀	b _{1 1235}	$\pi_{1 \ 1600}$		+	corresponding
N ₂₀₈₀						ρ ₁₇₀₀				a	nuparticles
N2100							a _{1 1260}	ŋ 2 1645		r Po	eatment of
N 2120						ω ₇₈₃				p	notons and
N2220						ω ₁₄₂₀		ω _{3 1670}		di	leptons
N ₂₂₅₀				A	s of SMASH-1.7	ω ₁₆₅₀				ls Is	ospin symmetry

- Mesons and baryon properties according to PDG
- Isospin multiplets and anti-particles are included

Resonances

- Spectral function
 - All unstable particles ("resonances") have relativistic Breit-Wigner spectral functions
- Decay widths
 - Particles stable, if width < 10 keV $(\pi, \eta, K, ...)$
 - Treatment of Manley et al $\Gamma_{R \to ab} = \Gamma^0_{R \to ab} \frac{\rho_{ab}(m)}{\rho_{ab}(M_0)}$

$$A(m) = \frac{2N}{\pi} \frac{m^2 \Gamma(m)}{(m^2 - M_0^2)^2 + m^2 \Gamma(m)^2}$$

D. M. Manley and E. M. Saleski, Phys. Rev. D 45, 4002 (1992)

As in GiBUU

Interactions collision term

In the few-GeV energy regime decay and excitation of resonances dominate hadronic cross section

String fragmentation

- For high-energy ($\sqrt{s} > 3 4$ GeV) hadron-hadron collisions
- Confinement: Color flux tube produces new quark pairs if quarks are separated
- Quark-antiquark or quark-diquark pairs from colliding hadrons form string that fragments into hadrons
- SMASH uses PYTHIA to perform hard scatterings and string fragmentation

Elementary Cross Sections

- Total cross sections of pp and $p\pi^-$
- One of the major constraints of transport approaches
- Different contributions at different energies
 - Low energies: Resonances
 - High energies: Strings
- Well described by SMASH

Results (I)

Comparison to analytic solution of Boltzmann eq.

Phys.Lett.B 770 (2017) 532-538

Perfect agreement with analytic solution for expanding metric shows correct numerical implementation of collision algorithm

Results (II)

Pion production for collisions at low energies

Phys.Rev.C 94 (2016) 5, 054905

Nice agreement with experimental data for pions at low energies

Results (III)

Comparison of SMASH and UrQMD Afterburner Stage

Phys.Rev.C 103 (2021) 5, 054904

Good **agreement between both approaches** for different bulk observables

More information on SMASH

Thanks for your attention

and thanks to everyone involved in the school's organization