-

The Site of the Wright Brothers' First Airplane Fl

The 2015 LONG RANGE PLAN for NUCLEAR SCIENCE

There are two central goals of measurements planned at RHIC, as it completes its scientific mission, and at the LHC: (1) Probe the inner workings of QGP by resolving its properties at shorter and shorter length scales. The complementarity of the two facilities is essential to this goal, as is a state-of-the-art jet detector at RHIC, called sPHENIX. (2) Map the phase diagram of QCD with experiments planned at RHIC.

р_{т,1}

`,p_{T,2}

Jet structure

vary momentum/angular scale of probe

transverse-momentum, and cold nuclear effects

SPHENIX Detector

optimized for hard probes and unique among RHIC experiments!

- large, uniform acceptance
- full electromagnetic and hadronic calorimetry
- high precision tracking/ vertexing
- huge AuAu samples, without biased triggered

sPHENIX relies on RHIC's ability to deliver high **luminosity ion beams**

Table 2: Demonstrated and projected luminosities for 100 GeV/nucleon Au+Au runs.

Parameter	Unit	FY2007	2010	2011	2014	2016	2023E	2025E
No of bunches k_b		103	111	111	111	111	111	111
Ions/bunch, initial N_b	10 ⁹	1.1	1.1	1.3	1.6	2.0	2.4	2.90
Average beam current/ring Iavg	mA	112	121	147	176	224	265	319
Stored beam energy	MJ	0.36	0.39	0.47	0.56	0.71	0.84	1.0
Envelope function at IP β^*	m	0.85	0.75	0.75	0.70	0.70	0.70	0.65
Beam-beam parameter <i>ξ</i> /IP	10-3	-1.7	-1.5	-2.1	-2.5	-3.9	-4.6	-5.6
Initial luminosity L _{init}	10 ²⁶ cm ⁻² s ⁻¹	30	40	50	80	155	215	336
Events per bunch-bunch crossing μ	•••	0.08	0.10	0.13	0.21	0.40	0.55	0.86
Average/initial luminosity	%	40	50	60	62	56	58	60
Average store luminosity Lavg	10 ²⁶ cm ⁻² s ⁻¹	12	20	30	50	87	125	200
Time in store	%	48	53	59	68	65	60	60
Max. luminosity/week	μb⁻¹	380	650	1000	2200	3000	4530	7260
Min. luminosity/week	μb⁻¹						3000	3000
L within $ z < 10$ cm, $\theta = 0$ mrad, r_0/r_{θ}^*	%						39/39	39/39
L within $ z < 10$ cm, $\theta = 2$ mrad, r_0/r_{θ}^*	%						31/81	31/81

Luminosity $L(z,\theta)$ within vertex cut |z| for full crossing angle θ . The values r_0/r_θ are $r_0 = L(z,\theta)/L(10 \text{ m},0)$ and $r_\theta = L(z,\theta)/L(10 \text{ m},\theta)$.

https://www.rhichome.bnl.gov/RHIC/Runs/RhicProjections.pdf

~2x increase in **RHIC in sPHENIX** era AuAu **luminosity over** 2016

why jets at RHIC?

• Different QGP: lower temperatures, closer to the QGP transition

why jets at RHIC?

- Different QGP: lower temperatures, closer to the QGP transition
- Different jets: jet flavor composition at the lower collision energy

why jets at RHIC? [1/fm]resolving power 10 microscope 5 $2T_c$ 200 jets evolve at QGP scales for a 0000 larger fraction of their evolution at **RHIC** than the **LHC**

- Different QGP: lower temperatures, closer to the QGP transition
- Different jets: jet flavor composition at the lower collision energy
- Different QGP/jet interaction: lower energy jets are expected to spend more of their evolution interacting at QGP scales

SPHENIX Run Plan

Year	Species	$\sqrt{s_{NN}}$	Cryo	Physics	Rec. Lum.	Samp. Lum.	
		[GeV]	Weeks	Weeks	z < 10 cm	z < 10 cm	
2023	Au+Au	200	24 (28)	9 (13)	3.7 (5.7) nb ^{−1}	4.5 (6.9) nb ⁻¹	
2024	$p^{\uparrow}p^{\uparrow}$	200	24 (28)	12 (16)	0.3 (0.4) pb ⁻¹ [5 kHz]	45 (62) pb ⁻¹	
					4.5 (6.2) pb ⁻¹ [10%- <i>str</i>]		
2024	p^{\uparrow} +Au	200		5	0.003 pb ⁻¹ [5 kHz]	$0.11 \ {\rm pb}^{-1}$	
					0.01 pb ⁻¹ [10%- <i>str</i>]		
2025	Au+Au	200	24 (28)	20.5 (24.5)	13 (15) nb ⁻¹	21 (25) nb ⁻¹	

https://indico.bnl.gov/event/15148/attachments/40846/68568/sPHENIX_Beam_Use_Proposal_2022.pdf

- 2023: Commissioning & first AuAu physics
- 2024:
 - pp data for HI reference and transverse spin measurements
 - pA data: cold QCD & small systems measurements
- 2025: High luminosity AuAu running, >140B MB AuAu collisions recorded

three-year run plan provides jets in AuAu & pp collisions over nearly the whole kinematic range accessible at RHIC

huge data samples allow for precision R_{AA} measurements + many other measurements

Signal	Au+Au 0–10% Counts	p+p Cou
Jets $p_{\rm T} > 20 { m GeV}$	22 000 000	11 000 0
Jets $p_{\rm T} > 40 { m GeV}$	65 000	31 000
Direct Photons $p_{\rm T} > 20 {\rm GeV}$	47 000	5 800
Direct Photons $p_{\rm T} > 30 {\rm GeV}$	2 400	290
Charged Hadrons $p_{\rm T} > 25 {\rm GeV}$	4 300	4 100

photon-jet measurements

measurement

11

jet radius dependent suppression

smaller UE event at RHIC helps the low p_T jet radius scan — an area where LHC measurements currently disagree huge min-bias AuAu samples allow unbiased jet samples

jet substructure

b-jet Raa

- at the LHC, differences between inclusive and b-jet R_{AA} are expected from flavor effects (b-jets from gluon splitting) and mass effects (at the lower p_T end of the measurement)
 - sPHENIX data at much lower p_T will isolate the mass effects

HF hadrons

precision tracking allows for measurements of both charm and bottom hadrons

large min-bias AuAu samples & streaming readout in pp collisions will allow for RAA (not RCP) for these important probes

pA physics

experimentalists & theorists discussing how to maximize the sPHENIX physics program

https://www.bnl.gov/sphenix2022/

in addition to the theory contributions (and two excellent JETSCAPE talks from Amit & Raymond) there are sPHENIX talks overviewing the program and discussing the capabilities of the physics working groups in detail

with a tour of the detector to wrap up the meeting

Inner HCal installation

Outer HCal

Solenoid

June 2022

EMCal insallation

First 2 EMCal sectors installed into the Inner HCal earlier this week!

summary

- sPHENIX physics program essential to the completion of the RHIC science mission
- probes physics and excellent RHIC performance
 - scientific program."
- commissioning with beam and first physics in February 2023

collaboration is excited to work with the entire community to improve our understanding of QGP properties

three year program takes advantage of new detector targeted to hard

• BNL PAC 2022: "The top overall priority in planning for the coming three years is to commission the sPHENIX detector and to achieve its

sPHENIX installation in full swing and the collaboration is on track for

backup

possible extra running

Year	Species	$\sqrt{s_{NN}}$	Cryo	Physics	Rec. Lum.	Samp. Lum.	
		[GeV]	Weeks	Weeks	z < 10 cm	z < 10 cm	
2026	$p^{\uparrow}p^{\uparrow}$	200	28	15.5	1.0 pb ⁻¹ [10 kHz]	80 pb ⁻¹	
					80 pb ⁻¹ [100%- <i>str</i>]		
_	O+O	200	_	2	$18 \mathrm{nb}^{-1}$	37 nb ⁻¹	
					37 nb ⁻¹ [100%-str]		
_	Ar+Ar	200	_	2	$6 \mathrm{nb}^{-1}$	12 nb ⁻¹	
					12 nb ⁻¹ [100%-str]		
2027	Au+Au	200	28	24.5	30 nb ⁻¹ [100%- <i>str</i> /DeMux]	30 nb ⁻¹	

should the opportunity arise, sPHENIX could increase the pp luminosity, explore light ions and take a lot more AuAu data

jet anisotropy

