The electron-ion collider: A collider to unravel <u>anthe</u> mysteries of visible matter

E.C. Aschenauer (BNL)

What is the EIC:

A high luminosity (10³³ – 10³⁴ cm⁻²s⁻¹) polarized electron proton / ion collider with $\sqrt{s_{\rm ep}}$ = 28 – 140 GeV

What is included in the EIC Project:

the collider & one interaction region and one general purpose detector

What can the EIC Facility support:

at minimum > 2 decades increase in kinematic coverage in x and Q²

The EIC Facility Electron Injection Possible Line On-energy Ion Injector Electro Injector EIC at BNL Linac Possible Polarized 2 nd Detector Electron Location Source **Possibl** Detector Electro Injector (RCS) (Polarized) **Ion Source** Hadron Storage Ring **Electron Storage Ring AGS** Electron Injector Synchrotron Possible on-energy Hadron injector ring Hadron injector complex .

Annual Integrated Luminosity [fb¹ 100 10

Double Ring Design Based on Existing RHIC Facilities

How are the sea quarks and gluons, and their spins, distributed in space and momentum inside the nucleon? How do the nucleon properties emerge from them and their interactions?

binding?

How do color-charged quarks and gluons, and colorless jets, interact with a nuclear medium? How do the confined hadronic states emerge from these quarks and gluons? How do the quark-gluon interactions create nuclear

How does a dense nuclear environment affect the quarks and gluons, their correlations, and their interactions?

What happens to the gluon density in nuclei? Does it saturate at high energy, giving rise to a gluonic matter with universal properties in all nuclei, even e proton?

What is needed to address the EIC Physics

The Golden Process:

Deep Inelastic Scattering (DIS):

- \triangleright As a probe, electron beams provide unmatched precision of the electromagnetic interaction
- \triangleright Direct, model independent determination of parton kinematics of physics processes

 $Q^2 = s \cdot x \cdot y$

- *s*: center-of-mass energy squared
- *Q²* : resolution power
- *x*: the fraction of the nucleon's momentum carried by the struck quark $(0 < x < 1)$
- *y:* inelasticity

large kinematic coverage: → center-of-mass energy √s: 20 – 140 GeV \rightarrow access to *x* and Q^2 over a wide range

What do we know: Mass of the Proton

Visible world: mainly made of light quarks – its mass emerges from quark-gluon interactions.

Proton

Quark structure: uud Mass ~ 940 MeV (~1 GeV) Proton Mass: 1.8×10−27 kg The Sum of all Quark masses accounts for 1% of the proton mass

Where does the rest of the mass hide ? **Most of mass generated by dynamics** Gluon rise discovered by HERA e-p

6 The proton is dominated by gluons EIC can access gluons in different ways to study their contribution to the nucleon

HOW TO ACCESS PARTONS IN DIS

Detect scattered lepton (DIS) in coincidence with identified hadrons (SIDIS)

- \rightarrow one can measure the correlation between different $\,$ hadrons as fct. of $\rm p_{\rm t}$, z, $\rm n$
- \rightarrow needs fragmentation functions to correlate hadron type with parton
- \rightarrow Detector: PID over a wide range of η and p Charge Current:

W-exchange: direct access to the quark flavor no FF – complementary to SIDIS

→ Detector: large rapidity coverage and large √s

Jets: $s^{e^{e^{e^{x}}}}$ best observable to access parton kinematics tag partons through the sub-processes and jet substructure

- \rightarrow di-jets: relative $p_t \rightarrow$ correlated to k_t
- \rightarrow tag on PGF
	- Detector: large rapidity coverage and PID

Gluons manifest themselves through How to access Gluons in DIS

1. the behavior of the cross section as function of x and Q^2

$$
\frac{d^2\sigma^{ep\to eX}}{dx dQ^2} = \frac{4\pi\alpha_{e.m.}^2}{xQ^4} \left[\left(1 - y + \frac{y^2}{2} \right) F_2(x, Q^2) - \frac{y^2}{2} F_L(x, Q^2) \right]
$$

quark+anti-quark gluon momentum momentum distributions distribution

without gluons the cross section depends only on **x**, no dependence on $\mathsf{Q}^2 \to \mathsf{F}_2(\mathsf{x})$

 \leq Bjorken scaling

8

How to access Gluons in DIS

1. Gluons manifest themselves through the scaling violation of the cross section as function of x and Q^2 $dF_2(x,Q^2)/dlnQ^2 \rightarrow G(x,Q^2)$

$$
\frac{d^2 \sigma^{ep \to ex}}{dx dQ^2} = \frac{4\pi \alpha_{e.m.}^2}{xQ^4} \left[\left(1 - y + \frac{y^2}{2} \right) F_2(x, Q^2) - \frac{y^2}{2} F_L(x, Q^2) \right]
$$
\n
$$
quark + anti-quark
$$
\n
$$
gluon momentum
$$
\n
$$
alstribution
$$
\n2. Directly through the measurement of F_L \n3. Through tagging of the photon gluon fusion process

The unpolarized Proton PDFs

At x of 0.3 the proton is dominated by gluons and sea quarks they should drive the inner structure of the proton

The Spin of the Proton

SPIN is one of the fundamental properties of matter all elementary particles, but the Higgs carry spin Spin cannot be explained by a static picture of the proton It is more than the number $\frac{1}{2}$! It is the interplay between the intrinsic properties and interactions of quarks and gluons

How to decompose the Spin of the Proton

Quark

Spin

Gluon **Spin**

To determine the contribution of quarks and gluons to the spin of the proton, one needs to measure the cross-section difference g_1 as function of x and Q^2

2+1 dimensional Imaging of Quarks & Gluons

Spin-dependent 3D momentum space images from semi-inclusive scattering

Spin-dependent 2+1D coordinate space images from exclusive scattering

2+1d-Imaging in coordinate space

Proton structure important for QGP in small systems

H. Mäntysaari & B. Schenke arXiv:1607.01711

In a hydro-picture (used in AA) fluctuations in the proton are crucial to understand the seen pA@LHC behaviors

Only EIC can map out the spatial quark and gluon structure of the proton in x and Q2

 $0.016 < x_V < 0.025$

 1.2 1.4

 0.2 0.4 06 0.8

 0.8

 b_T (fm)

 $0.0016 < x_V < 0.0025$

 0.4 0.6

 0.2

 0.4 0.6 0.8

> 1.2 1.4

> > 0.12

 0.1 0.08

 0.06

 0.04

 0.02

 $e + p \rightarrow e + p + J/\psi$ $15.8 < Q^2 + M_{J/\psi}^2 < 25.1$ GeV²

 0.12
 0.1
 0.08

 0.06 0.04

 0.02

 0.06 0.04

 0.02

 1.4

What about Nuclei?

nPDFs before and after EIC

predicts Q^2 but not A-dependence and x-dependence Saturation models:

predict A-dependence and x-dependence but not Q^2 \rightarrow Need: large Q² lever-arm for fixed x, A-scan

Measure different structure function in $eA \rightarrow$ constrain nPDF:

$$
\frac{d^2 \sigma^{ep \to eX}}{dx dQ^2} = \frac{4\pi \alpha_{e.m.}^2}{xQ^4} \left[\left(1 - y + \frac{y^2}{2} \right) F_2(x, Q^2) - \frac{y^2}{2} F_L(x, Q^2) \right]
$$

quark+anti-quark momentum distributions gluon momentum distribution or tag on charm \Rightarrow $F_2^{\ c}$

can EIC discover a new state of matter

Is the proton a runaway popcorn machine?

Does this rise get tamed ?

Important to understand the initial condition for heavy ion collisons till today only ambiguous hints

EIC: Spatial Gluon Distribution from d //dt

Studying non-linear effects

- □ Does the rise of $g(x,Q^2)$ get tamed ?
- Important to understand the initial condition for heavy ion collisions
- Scattering of electrons off nuclei:
- □ Probes interact over distances $L \sim (2m_N x)^{-1}$
- \Box For $L > 2 R_A \sim A^{1/3}$ probe cannot distinguish between nucleons in front or back of nucleon
- ❑ Probe interacts *coherently* with all nucleons

3

 χ)

$$
\frac{\alpha_s xG(x,Q_s^2)}{\pi R_A^2}
$$
 HERA: $xG \sim \frac{1}{x^{0.3}}$ A dependence: $xG_A \sim A$
Nuclear "Oomph" Factor
Pocket Formula:

Enhancement of Q_S with $A \Rightarrow$ non-linear QCD regime reached at significantly lower energy in nuclei than in proton

1

 $Q_{\rm s}^2$ ~

can EIC discover a new state of matter

 0.6

 0.4

 2.5

EIC provides an absolutely unique opportunity to have very high gluon densities \rightarrow electron – lead collisions combined with an unambiguous observable

EIC will allow to unambiguously map the transition from a nonsaturated to saturated regime

counting experiment of Di-jets in ep and eA Saturation: Disappearance of backward jet in eA \overline{e} #backward jets in eA / ep $\sqrt{\text{s}} = 40 \text{ GeV}$ 1.4 $\sqrt{s} = 63$ GeV #backward jets in eA / hincreased suppression $\sqrt{s} = 90$ GeV $O(4\Phi)$ ekh/ $O(4\Phi)$ eb 1.2 0.8 →increased √s

 3.5

3

 $\Delta\phi$ (rad)

EIC Detector Concept

What is needed experimentally?

experimental measurements categories to address EIC physics:

inclusive DIS

- measure scattered lepton
- multi-dimensional binning: x, Q²
	- \rightarrow reach to lowest x, Q² impacts Interaction Region design

semi-inclusive DIS

- measure scattered lepton and hadrons in coincidence
- multi-dimensional binning: x, Q², z, p_T, Θ
	- \rightarrow particle identification over entire region is critical

$\int L dt$: 1 fb⁻¹ 10 fb⁻¹ 10 - 100 fb⁻¹

machine & detector requirements

exclusive processes

- measure all particles in event
- multi-dimensional binning: x, Q², t, Θ
- \bullet proton p_t: 0.2 1.3 GeV
	- \rightarrow cannot be detected in main detector
	- \rightarrow strong impact on Interaction Region design

Experimental Equipment

Overall detector requirements:

- Large rapidity (-4 < η < 4) coverage; and far beyond especially in far-forward detector regions
	- Large acceptance for diffraction, tagging, neutrons from nuclear breakup: critical for physics program Many ancillary detector along the beam lines: low-Q² tagger, Roman Pots, Zero-Degree Calorimeter, ….

\Box High precision low mass tracking

- small (μ -vertex Silicon) and large radius (gaseousbased) tracking
- ❑ Electromagnetic and Hadronic Calorimetry
	- equal coverage of tracking and EM-calorimetry
	- High performance PID to separate e, π , K, p on track level
		- o good e/h separation critical for scattered electron identification
	- Maximum scientific flexibility
		- Streaming DAQ \rightarrow integrating AI/ML
- ❑ High control of systematics
	- luminosity monitor, electron & hadron Polarimetry
- \Box Integration Integration Integration \rightarrow critical
	- 50 cm between detector and first IR magnets

What is new/special for a EIC GP

Vertex detector → Identify primary and secondary vertices, Low material budget: 0.05% X/X₀ per layer; High spatial resolution: 10 μ m pitch CMOS Monolithic Active Pixel Sensor (MAPS) \rightarrow synergy with Alice ITS3

Central tracker → Measure charged track momenta MAPS – tracking layers in combination with micro pattern gas detectors

electron and hadron endcap tracker → Measure charged track momenta MAPS – disks in combination with micro pattern gas detectors

Particle Identification → pion, kaon, proton separation RICH detectors & Time-of-Flight high resolution timing detectors (, LAPPS, LGAD) 10 – 30 ps novel photon sensors: MCP-PMT / LAPPD

Electromagnetic calorimeter → Measure photons (E, angle), identify electrons Crystals (backward), W/SciFi Spacal (forward) Barrel: Pb/SciFi+imaging part or Scintillating glass \rightarrow cost effective

Hadron calorimeter → Measure charged hadrons, neutrons and K_L⁰ challenge achieve ~50%/ \sqrt{E} + 10% for low E hadrons (<E> ~ 20 GeV) Fe/Sc sandwich with longitudinal segmentation

DAQ & Readout Electronics: trigger-less / streaming DAQ Integrate AI into DAQ → cognizant Detector

E.C. Aschenauer 29 **+ Beam pipe and very forward and backward detectors**

Take Away Message

th
E

Why EIC now?

"all stars align":

collider with the collider with \sim

and particle \sim science

 \mathcal{V} in \mathcal{V}

□ theory developments will allow to obtain the
answers to the big questions discussed
and particle program will profoundly impact
detector with high detector with high and particle program
and particle program of the inne answers to the big questions discussed □ detector technologies allow for a collider will profoundly impact
detector with high detector with high d

detector with high resolution of the detector with high resolution

aur ^{Unive} of the

 \Box allow to built allow to built allow to built allows a full \Box

 \triangleright ling electron polarized behavior and light hadron and light h \mathbf{b} \triangleright a \cdot or begin \cdot mass energies \triangleright h never with highest A **Anding acceptance requirements** can be realized in IR design

Let's get to work and built the EIC

Please join us

The EIC: A Unique Collider **EIC LHC**

collide different beam species: ep & eA

- \rightarrow consequences for beam backgrounds
	- \rightarrow hadron beam backgrounds,
		- i.e. beam gas events
	- \rightarrow synchrotron radiation

asymmetric beam energies

- \rightarrow boosted kinematics
	- \rightarrow high activity at high |n|

Small bunch spacing: >= 9ns

crossing angle: 25mrad

wide range in center of mass energies \rightarrow factor 6

electron beam follows B-factory design parameters but polarized

```
both beams are polarized
\rightarrow stat uncertainty: \sim 1/(P<sub>1</sub>P<sub>2</sub>(/L dt )<sup>1/2</sup>)
```
collide the same beam species: pp, pA, AA

- \rightarrow beam backgrounds
	- \rightarrow hadron beam backgrounds,
		- i.e. beam gas events, high pile up

symmetric beam energies

- \rightarrow kinematics is not boosted
	- \rightarrow most activity at midrapidity

moderate bunch spacing: 25 ns

no significant crossing angle yet (150 μ rad now)

LHC limited range in center of mass energies \rightarrow factor 2

no beam polarization \rightarrow stat uncertainty: ~1/($/L$ dt)^{1/2}

Differences impact detector design, acceptance and possible technolog

Tracking:

❑Silicon – MAPS

- ➢ already ongoing R&D collaboration with CERN/ALICE ITS development (0.05% X/X_0 per layer & 10 μ m pitch)
	- low mass EIC ITS-3 based forward disks new development

Sub-Detector Technologies

Silicon Genesis: 20 micron thick wafer

Chipworks: 30um-thick RF-SOI CMOS

Electro-Magnetic Calorimeter

Applications:

- \triangleright Scattered electron kinematics measurement at large $|\eta|$ in the e-endcap
- \triangleright Photon detection and energy measurement
- \triangleright e/h separation (via E/p & cluster topology)
- $\triangleright \pi^0/\gamma$ separation

Anticipated stochastic term in energy resolution $\& \pi$ suppression

Other considerations:

- \triangleright Fast timing
- \triangleright Compactness (small X_0 and R_M)
- \triangleright Tower granularity
- ➢ Readout immune to the magnetic field

EIC Yellow Report

Hybrid concept:

- 6 imaging layer: AstroPix and Pb/SciFi
	- AstroPix, monolithic Si sensor, dev

	Fixthe Contract Contract (from ATLASPIX)

bHCal

- Pb/SciFi following KLOE, GlueX
- Reconstruct scattered and secondary electrons
- Separate e/π
- Identify and reconstruct g (also radiated from e)
- Identify π^0 also at high momenta

 γ 's from 15 GeV/c π^0 decay

Barrel – ECal ala ATHENA

expected performance

EIC PID

needs are more demanding then your normal collider detector

EIC

needs absolute particle numbers at high purity and low contamination

hadron separation Dual radiator RICH for π , K, p

Cerenkov Based Detectors

Hadron PID

REFERENCE

hpDIRC (High Performance DIRC)

- Quartz bar radiator, light detection with MCP-PMTs
	- **Fully focused**
- p/K 3s sep. at 6 GeV/c
- Reuse of BABAR DIRC as alternative
- Integration into a 4π detector can be challenging

 $STAR: \sim$ similar resolution expected dE/dx from gaseous tracker, i.e. TPC complementary

Barrel

Backward Endcap

Geant4 Simulation

E.C. Aschena

REFERENCE

mRICH (Modular RICH)

- Aerogel Cherenkov Det.
- Focused by Fresnel lens
- e, pi, K, p
- Sensor: SiPMs/ LAPPDs
- Adaptable to includeTOF
- π /K 3 σ sep. at 10 GeV/c

Everywhere

TOF with short lever arm

Forward Endcap

Readou lectronics CEM atool CF, Radiato Particle track

Full momentum range Sensor: Si PMs(TBC) p/K 3 σ sep. at 50 GeV/c

windowless RICH

- Gaseous sensors (MPGDs)
- $CF₄$ as radiator and sensor gas

Low p complements required:

TOF \sim 2.5m lever arm / Aerogel (mRICH)

HP-RICH (high pressure RICH)

- Eco-friendly alternative for dRICH/windowless RICH
- Ar @ 3. 5 bar \leftrightarrow C₄ F₁₀ @ 1 bar
- Ar @ 2 bar \leftrightarrow C F₄ @ 1 bar

LGAD (Low Gain Avalanche Detector)

- Silicon Avalanche
- 20-35 psec
- Accurate space point for tracking
- **Relevant also to central barrel**
- R&D and PED by International consortium HEP & NP

LGAD N on P microStrip P on P microStrip iLGAD

LAPPD (Large Area psec Photon Detector)

- MCP, Cherenkov in window
- 5-10 psec
- \rightarrow supported by DOE SBIR program

Inclusive Cross-Sections in eA

arXiv:1708.05654

EIC: Impact on the Knowledge of 1D Nuclear PDFs √s < 90 GeV

Ratio of PDF of Pb over Proton

- ❑ Without EIC, large uncertainties
	- \rightarrow With EIC significantly reduced uncertainties
- ❑ Complementary to RHIC and LHC pA data. Provides information on initial state for heavy ion collisions.
- ❑ Does the nucleus behave like a proton at low-x?
	- \rightarrow relevant to very high-energy cosmic ray studies
	- \rightarrow critical input to AA
- ❑ arXiv:1708.05654