

WLCG DC Monitoring follow-ups

WLCG Monitoring TaskForce

07.11.2022

WLCG Monitoring Task Force

- WLCG Monitoring TaskForce was presented on December 2021
 - During WLCG Operations coordination <u>meeting</u>
 - Real activities started January 2022: meetings, JIRA project...
- Core team of ~6 people in "best effort"
 - Alessandra Forti, Borja Garrido, Derek Weitzel, Julia Andreeva, Rizart Dona, Shawn McKee
 - Meeting every 2 weeks for checkpointing and planification
 - Special thanks to Katy Ellis and Robert Currie for their contributions in XRootD Improvements

Introduction

• WLCG DC 2021

- Successfully performed
- Last presentation provided May 2022
- Monitoring recommendations were done

WLCG Monitoring TF

- Focused on three main areas:
 - XrootD Monitoring re-structure
 - Transfer data harmonization
 - Common Schema
 - Common DC Dashboards
 - Site monitoring
- Last update provided during <u>GDB</u>

Monitoring

- DC Dashboard generally considered useful
 - Used for both DC and TC I & II
 - Required expertise in the data structures to plot consistent information
 - Many plots could only be static selections
 - xrootd likely under estimated
- <u>WLCG monitoring TF</u> following DC recommendations
 - Re-structure xrootd monitoring infrastructure
 - Agree a common schema between the experiments, FTS & xrootd
 - Refactor DC dashboard to use the new schema
 - Add site monitoring

WLCG transfers data harmonization

- Consolidate schema between FTS/XRootD transfer documents
 - Agree on a minimum required schema for both flows
- Adapt WLCG transfers dashboards to new common schema
 - Provide a set of useful dashboards under the WLCG umbrella
 - Avoid specificalities for experiments

🖺 🕸 ② Last 24 hours 🗸 📿 🏹 🗸

~ General Plots

nhite

Ģ

Status update

- First dashboard version was created
 - With striped VO specificalities and current available schema
- Draft document was created and circulated
 - Proposing the minimum required fields that the tools will need to provide
- Feedback was collected and discussed
- Agreement reached with experiments on the fields to aim for
- Meet developers (XRootD, FTS, dCache)
 - To understand need for changes to fit the schema
- Adapt dashboard to make full usage of the new schema

XRootD monitoring improvements

- Redesign current implementation based on XRootD server reports
 - Relying on the UDP protocol
 - Work implies collaboration between MONIT and OSG developers
- Coordinate with dCache developers to enable monitoring flow
 - For the use case dCache+XRootD port
- Make sure that XRootD is properly integrated in the WLCG transfer monitor
 - Including also ALICE XRootD monitoring flow

Architecture Components

- Two new components XRootD shoveler and XRootD collector
 - Already developed and deployed for OSG when WLCG work started
- XRootD Shoveler
 - New component that ships XRootD monitoring streams to a message queue
 - Main goal is to deploy it as close as possible to the XRootD server
 - Motivation is to reduce the chance of losing UDP packets
- XRootD Collector
 - Similar component to the previous GLED collectors
 - Receives and aggregates XRootD monitoring streams into a "transfer" document

Architecture Components (Missing development)

XRootD Shoveler

- Currently using non-TLS connection with basic auth
 - Request to allow TLS (will require the usage of robot certificates)
- Improve shoveler installation docs for "non-docker" deployments

XRootD Collector

- Possible improvements driven by few issues found during first validation phase
 - Will be mentioned later on another slide

Current situation OSG + WLCG

Current situation (OSG)

Running deployment for several sites already

• All Open Science Data Federation Caches - 9 shovelers across the U.S. and Europe (Amsterdam, Cardiff), Purdue, Florida, Nebraska, UCSD, Caltech, MIT T2 and T3

• Sending monitoring data to CERN

- On a CMS specific flow (so not integrated with WLCG XRootD as for now)
- Completed validation of the new flow
 - <u>Correctness</u> and <u>Scale</u>

Last reported situation (WLCG)

- Test bed deployment running on a Kubernetes cluster
 - Currently we are running a battery of shovelers and a collector
 - Shovelers should not be run centrally, but required for testing phase
- Integrating EOS ALICE servers at CERN
 - Closer to the development team, within CERN network (so less UDP loss risk)...
 - Few servers reconfigured temporarily for sending data to the new flow
 - Data was flowing as expected, but we observed a lack of VO information
- Shoveler deployed in a few sites for testing purposes
 - Manchester (ATLAS), RAL (CMS)
 - Data integrated shows as well a lack of VO information in some of the cases
 - First numbers comparison with internal monitoring from RAL don't seem to match

Current situation (WLCG)

- Started several tasks to tackle issues found on first phases
- Numbers validation
 - Validation of numbers between new flow and Monalisa
 - Set a new test flow between OSG CERN to compare numbers between both deployments
 - Re-do numbers validation for RAL with experts to understand discrepancies
- Lack of fields
 - Deemed to be produced by specific server configurations
 - The idea is to start deploying the available components to more sites to assess situation better
 - Missing a small development for the shoveler to work with certificates (CERN MQ requirement)

Other producers of XRootD data

ALICE Monalisa

- Current aim is to converge with this new flow
 - XRootD servers will report in parallel to Monalisa and new shovelers
 - WLCG Monitoring information will be based on the shovelers flow
- xCache
 - OSG already monitors their XCache instances with this new flow
 - The same will be applied for WLCG
- dCache
 - Data will need to be integrated in a separate flow in MONIT
 - Schema of the "final" data checked to be compatible

Network site monitoring

Motivation

- Lack of information about network traffic for sites During DC1 in October 2021
- Total traffic to/from our sites needed to identify issues/bottlenecks
- Find a way to gather the minimal amount of information that will help us understand and improve how our sites work across the WAN.

- Provide human readable information about a sites network
 - <u>Template</u> created for sites to clone and fill our following the <u>instructions</u>
 - Examples can be found in Gitlab
 - File needs to be converted to HTML, uploaded to a Site webserver and linked in WLCG CRIC

• Provide site's IN and OUT network traffic (total)

- Updated each minute, in a publicly accessible URL in JSON format
- Example Python3 <u>script</u> implemented
 - Queries one or more interfaces representing site's boundary

- Preparation of Network template for sites to fill in
- Add needed fields in CRIC for sites to define Monitoring links
- Develop script to gather and expose minimum set of network metrics
- Integrate metrics in MONIT for visualization
- Tune-up script as required for different sites
- Deploy script in T1s initially so a dashboard can be created

Site's homework

Sites will be expected to:

- Document their network at a high-level, with options to provide helpful details
 - Information about site topology, peering, hardware and capacity can allow WLCG network experts to better support, diagnose and fix network problems
- Gather (via snmp or other data source) the IN/OUT traffic of their whole site
 - This requires identifying the interface(s) that represent the "border" of the site and a mechanism to gather the interface(s) traffic
- Provide URLs to access the network information and monitoring files
- Maintain the documentation and update monitoring as networking at the site evolves

Questions & Answers

Contact: <u>wlcgmon-tf@cern.ch</u> Shoveler installation <u>docs</u>

Acknowledgments

• OSG contributed XRootD and Site Monitoring improvements:

This project is supported by the National Science Foundation under Cooperative Agreements OAC-1836650, MPS-1148698 and OAC-2030508. Any opinions, findings, conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.

home.cern