The path to the next WLCG Data Challenge

Christoph Wissing, Mario Lassnig

with content provided by many colleagues especially many thanks to Alessandra, Ale&Zach, David&David, Simone, Riccardo, Rizart!

WLCG Workshop 2022 7 November 2022 - 9 November 2022 https://indico.cern.ch/event/1162261

Data Challenges: Set up

WLCG objectives

Planning document

Export of RAW data from CERN to the T1s Data processing Incremental steps until HL-LHC Accompanying R&D programme

2020 estimation

- **4.8 Tbps** of total network capacity
 - ATLAS & CMS400 Gbps flatALICE & LHCb100 Gbps flat
 - x2 to absorb expected bursts
 - x2 overprovisioning for operational flexibility

As of now, this has not changed

	%ATLAS	%CMS	% Alice	% LHCb	ATLAS+CMS Network Needs (Gbps) Minimal Scenario in 2027	Alice Network Needs (Gbps) Minimal Scenario in 2027		LHCb Network Needs (Gbps) Minimal Scenario in 2027		LHC Network Needs (Gbps) Minimal Scenario in 2027		(LHC Network Needs (Gbps) Flexible Scenario in 2027	
F	10	0	0	0	200		0		0			200	400	
	12	10	21	17	450		80		70			600	1200	
	4	5	0	4	180		0		20			200	400	
3	13	10	14	15	450	60		60				570		
IAF	9	15	26	24	480							690		
SDC	0	0	12	0	0		50		0			50	100	
	6	0	8	0	110		30		0			140	280	
	7		3	8	140		10		30			180	360	
	3	0	13	5	50	50			20			120		
	15	10	3		490		10		110			610	1220	
1	0	10	0	0	200		0		0			200	400	
	23	0	0		450		0		0			450	900	
MS	0	40	0	0	800		0		0			800	1600	
nk)					1250		0		0			1250	2500	
	100	100	100	100	4000		400		410		<u> </u>	4810	9620	
	т	Т1			(Gbps) Minimal Scenario in 2027		(Gbps) Flexible Scenario in 2027		Challer target 2 (Gbp	2027	Challenge target 2025 (Gbps)	Challenge target 2023 (Gbps)	Challenge target 2021 (Gbps)	
		CA-TRIUMF			200		400			100	60	30	10	
	D	DE-KIT			600		0 1200			300	180	90	30	
	ES-PIC			200		400			100	60	30	10		
		FR-CCIN2P3			570		1140			290	170		30	
	IT	IT-INFN-CNAF			690		1380			350	210		30	
		KR-KISTI-GSDC			50		100			30	20		C	
	NDGF			140		280			70	40		10		
	NL-T1			180		360			90	50		10		
		RC-KI-T1				120		240		60	40		10	
		K-T1-RAL				610		1220		310	180		30	
		U-JINR-T				200		400		100	60		10	
		S-T1-BNI				450		900		230	140		20	
	US-FNAL-CMS			800		1600			400	240		40		
		s-FINAL-C				1250		2500		630	380		60	
	(2	inanuc III	IIK)			1250		2500	_	050	380	, 190	60	
						4810		9620	- F	2430	1450	730	240	
	5	um				4610		9620		2430	1450	/ /50	240	

T1

CA-TRIUMF DE-KIT

KR-KISTI-GS

RU-JINR-T1 US-T1-BNL US-FNAL-CN (atlantic link

ES-PIC FR-CCIN2P3 IT-INFN-CNA

NL-T1 NRC-KI-T1 UK-T1-RAL

Sum

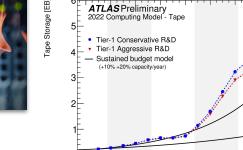
Ingress-only rate

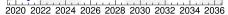
2

2022-11-07

Data Challenge 2021

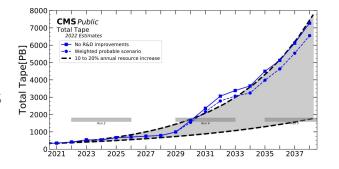
Executed as two separate challenges


Disk and network Separate Run-3 tape commissioning


Objectives

 10% of global HL-LHC traffic at flexible/960 Gbps target Live system already running in minimum mode
 T0-T1 export at minimum/240 Gbps target Run-3 infrastructure bottleneck discovery
 Commissioning of HTTP-TPC transfer protocol
 Achieve common WLCG network monitoring

Implementation


Production infrastructure was used / no separate testbed
Dedicated system developed to control data challenge rates
Where necessary, additional traffic in backfill injection mode for ATLAS and CMS
Overlap challenges of all LHC experiments
Use existing MONIT infrastructure for monitoring
Ensure inclusion of XRootD traffic (ALICE & part of CMS) in evaluation

Bun 4 (u=88-140

Year

Bun 5 (u=165-20

Data Challenge 2021 measurements

Data Challenge 2021 observations

20 million transfer with burst injection

Short lifetime (1d) for **disk space** reasons Few configuration changes for storage, Rucio, FTS Observed transfer failures unrelated to challenges

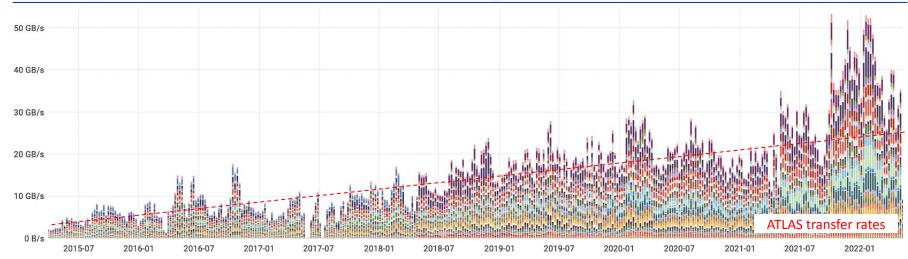
Tape challenge achieved more continuous flows

NOTED SDN was enabled during challenge

LHCOPN saturation detected Additional LHCONF channel added cf. talk by Maria later today

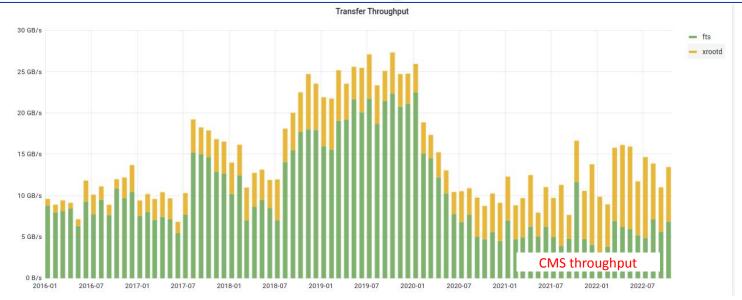
Common monitoring setup very helpful

Detail improvements over the next months



The path to the next challenge

As planned, next challenge would jump from 10% (960 Gbps) to 30% (2880 Gbps) of HL-LHC requirements


Largest single step increase in the decade-long plan

We have to realistically target the flexible model

Minimum model relies on purely **hierarchical flows**, which works only for the T0-T1 Export case Experiment dataflows are already **complex**, and new **interactive analysis models** are coming

The path to the next challenge

Various optimisations established at the end of LHC Run 2

Unscheduled XRootD traffic is important for CMS

Monitoring known to be incomplete - improvements are ongoing

Should be also become part of the next challenge


Updated schedule



HL-LHC timeline has been revised

Next "cycle" key WLCG/DOMA topics

Token-based authn/z Software-defined networking Flow & packet marking TAPE HTTP interaction

Data Challenge 2021 outcome, recommendations, major points to address

https://zenodo.org/record/5767913 (detailed 23 pages)

XRootD monitoring integration of standard storage and XCaches

Extend the length of the challenge from few days to 2+ weeks Demonstrate sustained traffic capability instead of peak traffic Time needed to test different SDN scenarios

Is filling the links even possible? Available data centre IO vs. available bandwidth vs. /dev/null ? Dedicated Tier-2 test possible?

LHC Experiment Questionnaire

When?

After the processing of the last 2023 Heavy Ion run has finished Before 2024 pp run starts Not during ISGC week (19-24 March)

early-ish 2024

What?

Specific focus on the test of **SE tokens** for storage, and **migration to IAM**

Monitoring with IPv6 flow labels

Demonstrate **SDNs** (*SENSE, AutoGOLE, NOTED, ALTO/TCN*) on selected production sites **Tape challenges** were part of the Run-3 export commissioning, necessary to repeat? Test **peering** with commercial clouds if possible

How?

Start with a series of distributed, constrained, and isolated ramp-up challenges

 Independently organised, and report via WLCG/DOMA

 Hardware purchasing greatly affects data challenge scope, influence on sites non-negligible

 Early integration of Tier-1s and Tier-2s in the planning
 Instead of a Data Challenge, possibility of stress tests instead?
 Revisit the original requirements, reduce to 20% or 25% challenge?

 Kindle discussion with non-LHC experiments for possible future combined Data Challenges

Data Challenge Side Meeting

Discussion with network experts after LHCOPN/LHCONE side meeting

Minutes: <u>https://docs.google.com/document/d/1zWZMR5U6-nhX1Zo8u-_TR0Nt9L3sUiTyQAo9c9Qsjts/edit</u>

Major points

Clear description of expected bandwidth (average and peak) and access patterns

Expectation management for Tier-2s (w.r.t. deployed capacity)

Assess complexity of challenge with more formal metrics and milestones

Start more formal cooperation with non-LHC experiments

At least DUNE and Belle 2 have already expressed that they want to participate

Engage with SKA, and potentially ITER, for long-term data challenge alignment (science data ~2028)

Generalise the idea of isolated testing of new features (esp. SDNs) on production infrastructure Official revisit of the bandwidth requirements

New HL-LHC schedule: Run4 in 2029 and first PU200 with Run5

e.g., <25% challenge would lead to most sites not having to purchase new network hardware