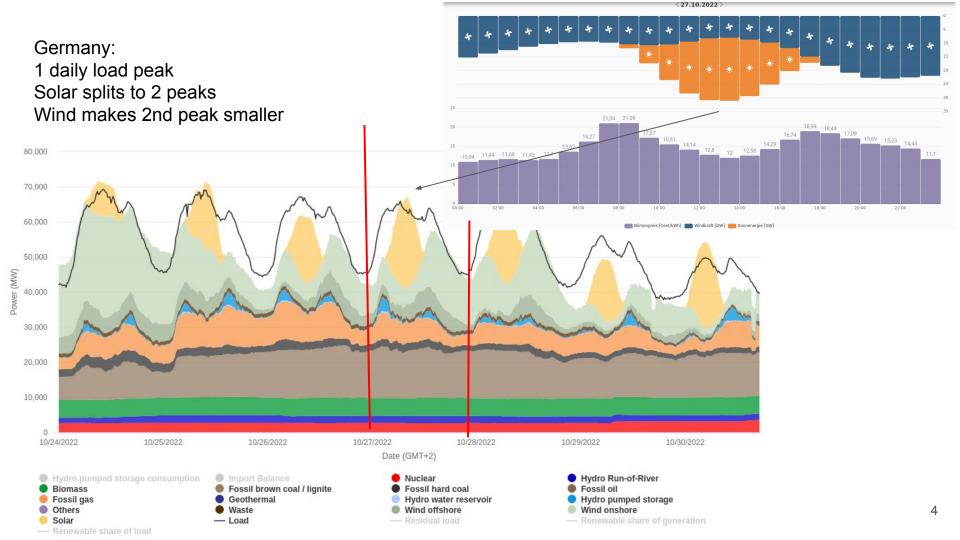
Voluntary load-shedding during peaks

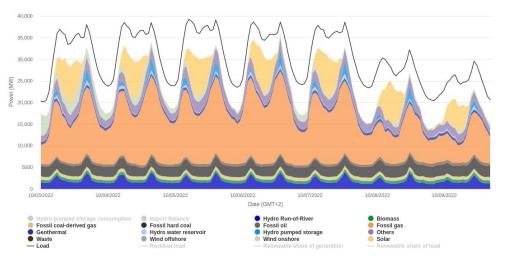
Rod Walker, LMU WLCG 9th Nov, 22


Flat reduction of energy bill: ATLAS preferred order

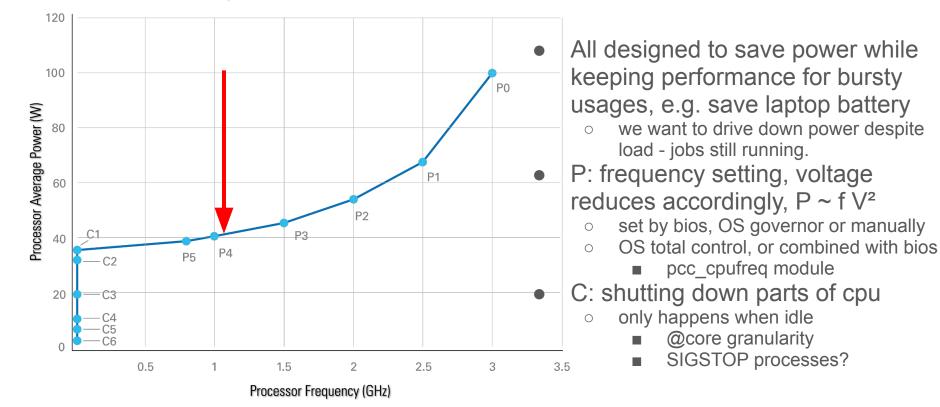
Nucleus T3

- 1. Turn off old hardware, during crisis or permanently
 - W/HS06 and W/TB often significantly higher for older hardware
 - O(10%) reduction in cpu or storage ok (if no ATLAS ops action needed)
 - post-crisis turn-on again, or return to pledge with 2023 hardware.
 - starting point is the pledge. Many sites way over cpu pledge(not storage).
- 2. Power down additional compute nodes to get to targeted saving
 - highest W/HS06
- 3. Compute cluster 100% powered down
- 4. Storage disk nodes powered down
 - keep headnode services running, and turn on pools once per week
 - DT coordination, some effort, maybe some risk
- 5. Storage 100% down

Why only the peaks?


- Short-term price increase caused by replacing Russian gas, French nuclear
 - gas used for electricity generation particularly in consumption peaks
 - EU wants voluntary 10% flat reduction, but mandatory 5% in peaks
 - "..identify the 10% of hours with the highest expected price and reduce demand during those peak hours." amounts to 3-4hrs per weekday.
 - \circ address underlying physical problem, leading to the financial one
- Long-term 'normal times' prices likely to vary more with time of day
 - o daily load peak conflated with intermittent renewables, network congestion, storage state
 - leads to peaks in fossil fuel usage, and price (ideally the same peaks)
 - shapeable loads will be vital for grid stability and tarif priced accordingly

Power reduction at peaks


Typically twice per weekday for 2 hrs

- can't drain nodes of jobs with lengths up to 4 days
- o can't preempt jobs at this frequency, due no checkpointing and so cpu waste
- probably not wise to power cycle nodes/power supplies/disks at this rate
- Repeatable cycle to save power with no bad effect on running jobs or pilots?

Italy from <u>https://energy-charts.info</u> Clear peaks, but gas base too. Complex - rely on experts and the market price having it all in.

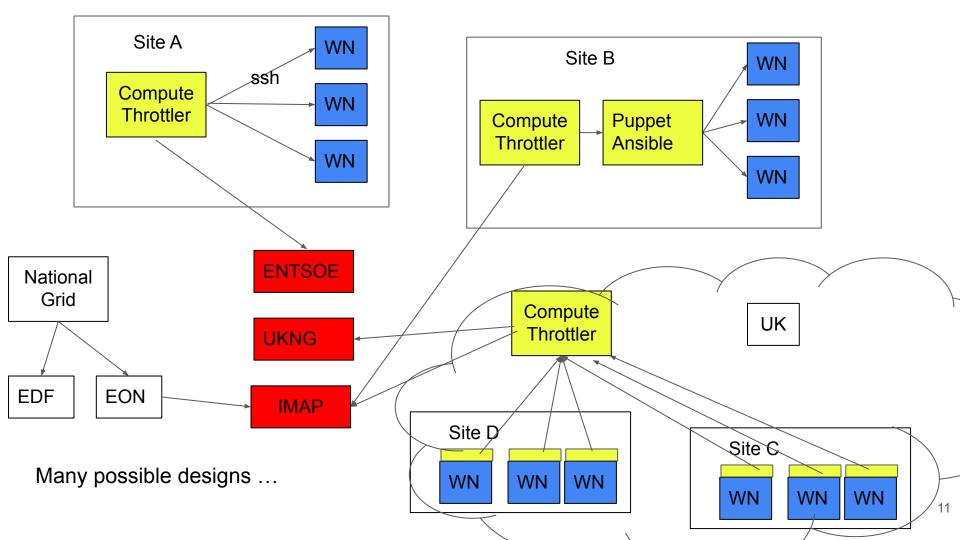
Bluffer's guide to CPU power management

Example Processor Power States

Hardware configuration(still bluffing)

- Operating system power management can only operate within constraints of BIOS firmware config
 - set min,max freq and who controls it (firmware/OS)
- LRZ-LMU SLES15 nodes load module pcc_cpufreq
 - OS gives hints to firmware, but firmware changes frequency
 - found the frequency did not reduce with governor change, and not completely with suspended processes.
 - <u>Apparently</u> should not be used for >4 cpus(cores), patched from 4.19 (sles 4.12)
 - need to blacklist this module or reconfigure BIOS
- OS control of cpu frequency should be possible for all sites
 - but might need reboot.

Power saving actions

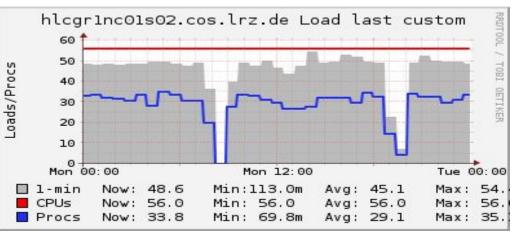

- Direct CPU frequency scaling to minimum: ~66% power saving
 - instant effect, also in reverse
 - transparent to workloads, apart from slowdown
- Or suspend processes, e.g. scontrol suspend [jobs], condor_suspend
 - SIGSTOP to all workload processes
 - then governor reduces the CPU frequency due to no load
 - might get into c-states, to save more power?
 - also stops pilot or overlay-BS startd
 - heartbeats not sent: ATLAS jobs would survive 90mins(configurable)
 - just SIGSTOP cpu-intensive processes? Pilot/Startd knows which is payload.
 - single core runs all pilot processes.
- Direct CPU frequency scaling has simplicity on its side
 - independent of BS, VO payload and WFMS
 - \circ ~ take the 66% for now.

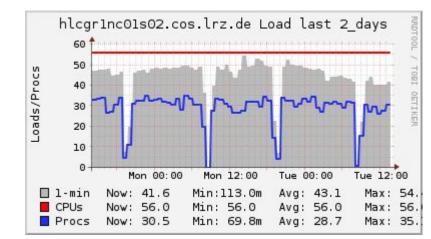
Forecasts to schedule power saving pauses

- Can assume day-ahead market price reflects physical need
 - EU wording specifically says to use this to identify the 10% peak hrs.
 - includes demand, weather forecasts(wind, solar), power station schedules
 - misses sudden deviations in weather, failures
- Available for most EU countries
 - <u>https://transparency.entsoe.eu/</u> with API to retrieve JSON
 - <u>https://www.awattar.de/tariffs/hourly</u> same information for DE/AT, convenient without token
 - I can't find it for UK, but has <u>https://data.nationalgrideso.com/carbon-intensity1</u>
- Direct signal from National Grid or energy provider
 - UK Demand Flexability Service sends mail/SMS with start time and duration to reduce power
 - pays 3GBP/kWh saved c.f. baseline. Business customers included.
 - need smart meter and participating provider, e.g. EON, EDF

Tool to schedule and trigger power saving actions

- Use forecast and some algorithm to schedule actions
 - <u>ENTSOE</u>, <u>Awattar</u>, <u>NGESO</u> or direct signal(IMAP)
 - find local maximum, or sliding window to maximize value, EU algorithm(TODO)
- Actions supported:
 - 'scontrol suspend/resume [jobs]' with reservation to block new jobs
 - 'cpupower frequency-set -g powersave/schedutil'
 - either by parallel_ssh or sharedFS control file read by cron on WNs
 - TODO: puppet, ansible?
- <u>https://gitlab.cern.ch/walkerr/computethrottler</u>
 - past 'proof of principle' to 'usable demo' level, but still rough.
 - config, logging, systemd service but no rpm.


24.10.2022>



🔲 Börsenpreis (Cent/kWh) 💼 Windkraft (GW) 🛑 Sonnenergie (GW)

- Variable tariff based on <u>spot-price</u>
- 1hr power save at peaks
 - slurm suspend in this case

Monitoring & Accounting

- Would like to see effect on power consumption, e.g. MONIT
 - kW reduction per site, region, forecast used
 - can be an estimate, based on 1-off measurement
 - store forecast data for plotting, archive & uniform access (for the throttler)
- Show idle HS06, due to load-shaping and temporary power down
- APEL accounting uses single HS06 rating per cluster
 - job on frequency throttled node HS06s=HS06_nom(wall_full + wall_pause*0.33)
 - job takes longer: short job with tight maxwalltime might suffer
- This Winter: no need to do accounting properly
 - 4hrs pause per day ~ 10% HS06s within errors from non-homogeneity/HT.
 - monthly correction based on monitoring?
 - ensure no bad consequences for contributing sites.

Conclusion

- Power down old hardware for Winter to get 10% flat reduction in Europe
 - o do out of solidarity: regardless of power bill problem. VOs will accept this..
- Can easily shed 66% load from compute cluster during peaks
 - motivated sites needed to improve and harden service
 - leading to simple service for WLCG deployment
 - lack of financial benefit(due to flat tariff), missing monitoring or accounting NOT good reasons not do this.
- Tools and lessons will be useful when variable tariffs are available/standard
 - o overdue and unavoidable as more intermittent renewables in mix