Energy Conservation Considerations @ DESY

Compute Cluster Preparations

Thomas Hartmann DESY IT

HELMHOLTZ RESEARCH FOR GRAND CHALLENGES

DESY.

Energy Consumers

Triage & planed energy usage modulation

Short Term:

- depends on the winter
- load shedding if necessary
 - on-site instruments mayor consumers
 - IT ~5-10%
 - IT triage by relevance
 - 1. compute clusters
 - 2. storage instances
 - 3. central services
 - depending on local data taking

Mid Term:

- Hamburg with large <u>renewable energy hinterland in</u> <u>northern Germany</u>
- adaptable energy usage w/r to production conditions
- keeping clusters up at 100% with varying load has been an *extravagance*
- what latencies for cluster modulation w/r to power source modulations realistic?

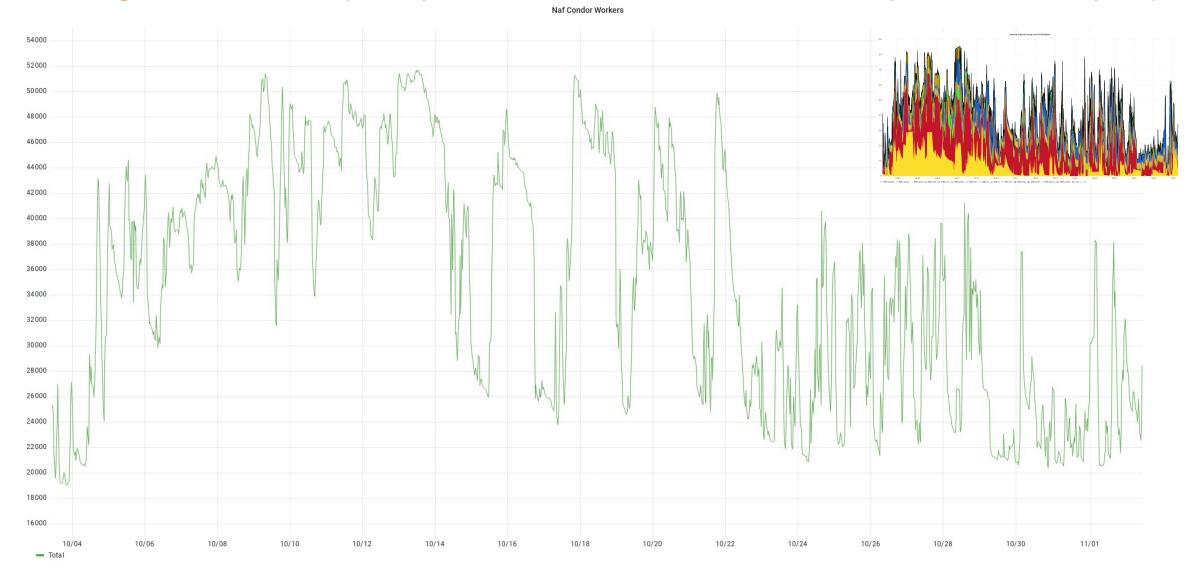
User HTC Cluster


NAF HTCondor Cluster

National Analysis Facility - User Cluster

- NAF: complementary to the Grid for individual users' jobs
- cluster utilization by the users fluctuating
 - day/night user behaviour + seasonable effects (aka conferences & holidays)
 - power consumption closely coupled
- had been keeping resources available 24/7
 - low job start latency pleases/placates users
 - now might become a noticeable cost

NAF HTCondor Cluster: Local User Jobs


Utilization over 30d/2d

10/27 10:00 10/27 12:00 10/27 14:00 10/27 15:00 10/27 20:00 10/27 20:00 10/27 22:00 10/28 00:00 10/28 00:00 10/28 00:00 10/28 00:00 10/28 10:00 10/28 12:00 10/28 16:00 10/28 16:00 10/28 16:00 10/28 20:00 10/28 20:00 10/29 00:00 10/29

NAF HTCondor Cluster: Load dependent Consumption

Power usage in kWh over 30d (incomplete, some older workers' PSU do not report their consumption)

NAF HTCondor Cluster

User jobs with runtime requirements

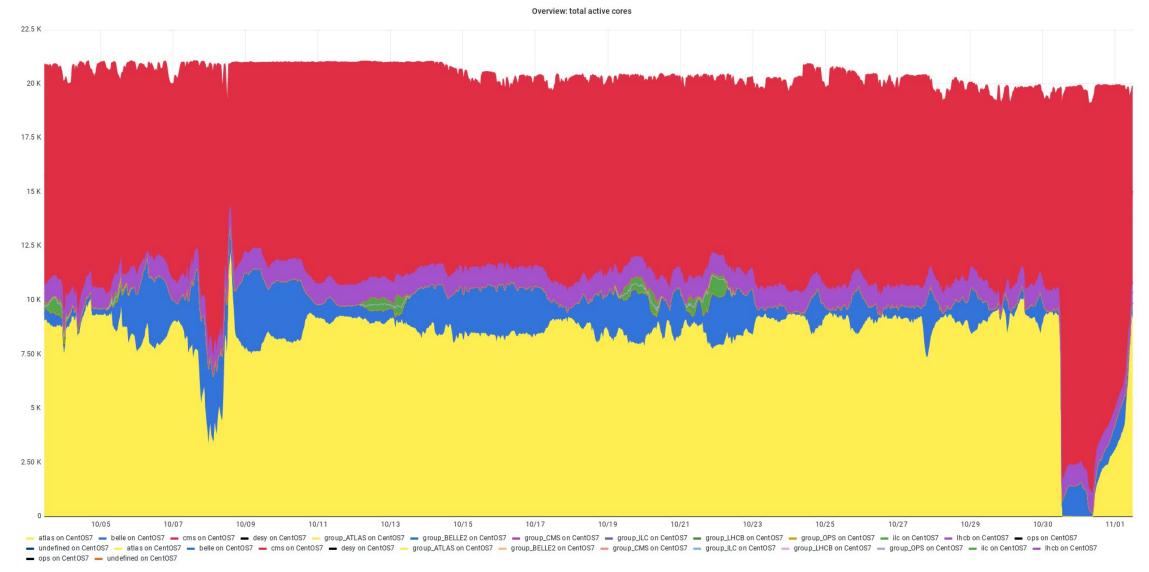
- already enforcing user jobs run times request
 - makes scheduling/planing possible
- currently: horizontal scheduling to distribute job entropy
- going for more vertical scheduling condensing short jobs on workers
 - easier & faster draining for projectable load shedding
- rough & ready user education: power consumption + CO2 load summaries

NAF HTCondor Cluster

User jobs with runtime requirements

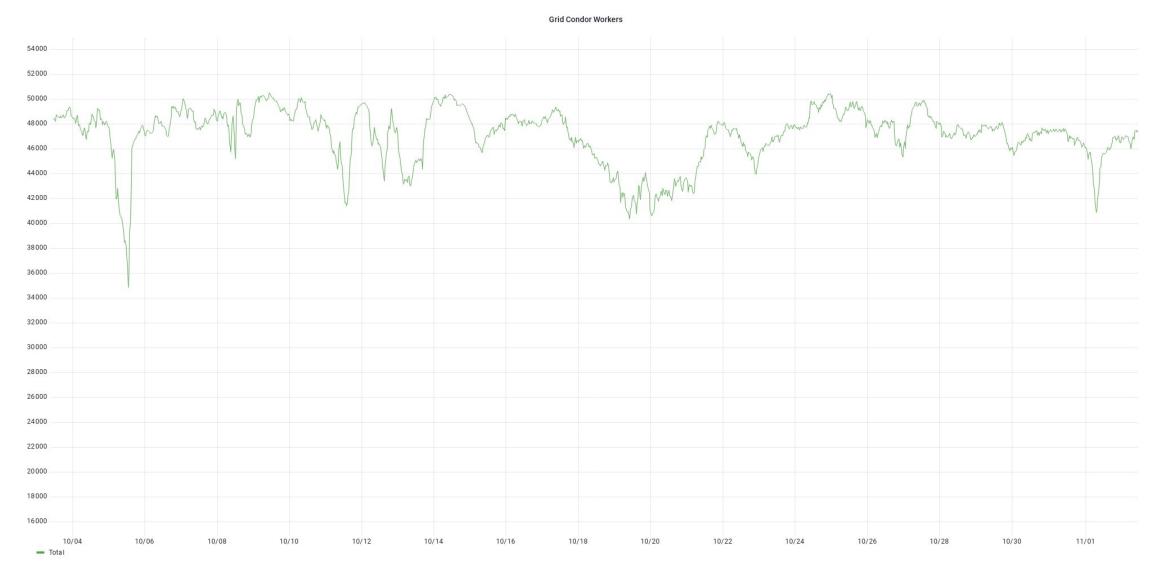
- setting up worker drain/shutdown/wake flows
- central wake via Foreman solution already in place
- currently manual steps ~> automation upcoming
- investigating *rctwake* for power napping (S2/S3 sleeps problematic)
- drain and wake on power sources as well as cluster load
- either central wake or individual worker wake
- cluster power ceiling as midterm aim
 - max total cluster power consumption as tunable

Grid HTC Cluster


Grid HTCondor Cluster

Grid prod jobs

- cluster utilized 24/7
- high utilization more efficient/effective than the NAF user cluster
 - w/o respect to job start latency
 - much higher inertia...
 - dynamic adaption to power provisioning only on longer time scales
- some sensitivity on payload efficiency (wall vs cpu time)
- investigated transparent job/CPU throttling as stop gap


Grid HTCondor Cluster

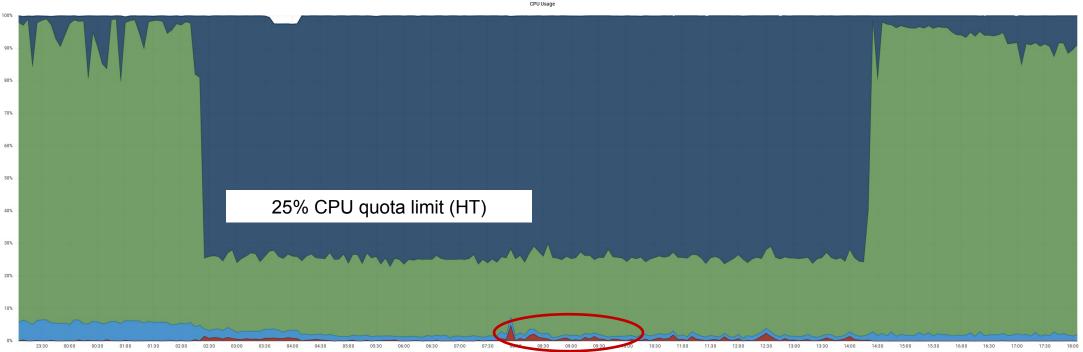
Utilization over 30d

Grid HTCondor Cluster: Power Usage

Power usage in kWh over 30d (incomplete, some older workers' PSU do not report their consumption)

Grid HTCondor Cluster: Job Efficiencies

Power usage correlated with VO Jobs Wall Time Efficiency



Job Throttling

DESY

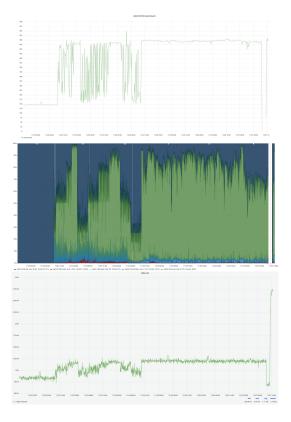
Limiting job usage by cgroup CPU quota

- HTCondor constrains jobs in cgroups
- CPU time quota can limit all/individual job payloads in their CPU walltime
- (mostly) transparent to the jobs
- depends on the CPU governor, HT/SMT, freq settings,...
- energy savings limited by base load

Grid HTCondor Cluster

Pilots make projectable scheduling impossible, Payloads not preemptable

- not really feasible to adapt, i.e., drain, with respect to energy source modulations
- longest running jobs force the min frequency for draining
 - CMS 48h pilots with horizontal scheduling
 - vertical guess scheduling aka ATLAS, Belle, ILC,... would penalize them
 - i.e., effectively segmenting cluster by VOs
- w/o preemption, checkpointing,... no transient load shedding possible
- hard load shedding would waste significant consumed power
- transparent CPU throttling in principle possible
 - significant power fine by offset base consumption
 - draining and keeping off/load shed sections of the cluster more economical


18h

DESY.

Job/CPU Throttling

On demand throttling

- run a few tests
 - throttling node to [100%, 75%, 50%, 25%] CPU time + [0 load, off]
 - PSU & PDU power consumption(s)
 - ~75W per 25% steps (@25% extra savings due to IOwait...)
- base idle load ~150W incl. PSU ~10% inefficiency
- realistically 1/3 of the power consumption might be saved by throttling...
- ...with a ~150W base offset
 - not very efficient (effective??) for a nearly 100% utilized HTC cluster
- conclusions for power savings or cluster power ceiling
 - load shedding nodes for good...

Summary

HTC Cluster energy saving outlook

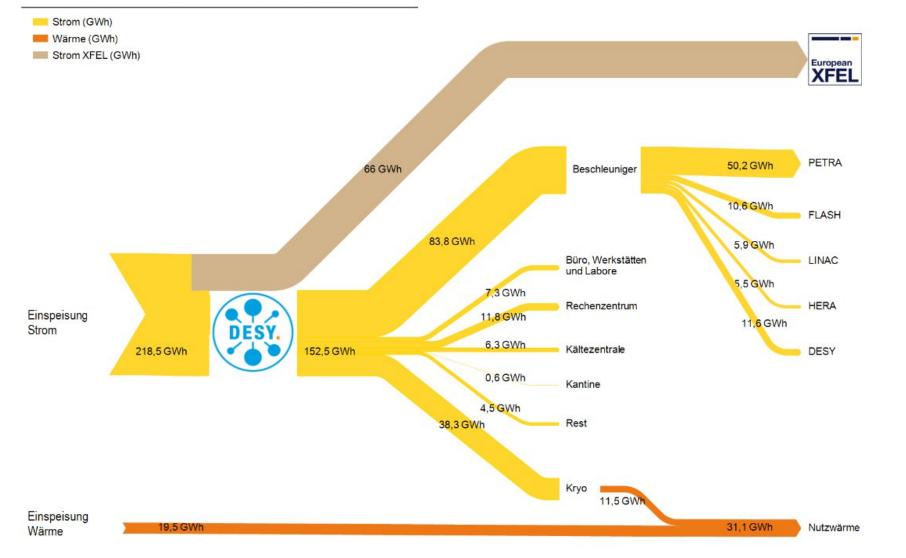
NAF

- dynamic user HTC cluster with realistic saving options
 - horizontal —> vertical scheduling
 - compacting schedulable short jobs/nodes for quick draining/shedding
 - utilization management
 - investigating power ceiling / capping
 - dynamic max cluster power consumption with automatic shedding

Grid

- more static Grid HTC cluster already ~100% utilization
 - dynamic load shedding constricted by w/o scheduling info
 - job CPU time or CPU freq throttling prohibitive base idle load

Thank You


Questions?

Appendix

DESY.

Hamburg Campus Total Power Consumption

Energieverbräuche DESY 2021

Contact

DESY. DeutschesThomas HartmannElektronen-SynchrotronDESY IThttps://naf.desy.dehttps://bird.desy.de

DESY.