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Abstract. Physics and mathematics are deeply connected. However, there is ample research that 

mathematical reasoning in physics is not at all trivial for students. We present four contributions 

that discuss different aspects of mathematics and mathematical representations in university 

physics. The first contribution discusses student understanding of the Laplacian in the heat 

equation. In the second contribution, we report on students’ interpretation of graphs representing 

non-constant acceleration motions. Study three deals with students’ reasoning processes while 

constructing graphs. The last contribution reports on the translation and administration across 

different institutions in Europe and the U.S. of two instruments measuring quantitative reasoning. 

The deep connection between mathematics and physics 

Physics and mathematics are deeply connected. This holds true for all levels of physics, but at 

a more advanced level, the role of mathematics becomes even more important. As such, 

proficiency in mathematics is required to understand physical phenomena, and being able to 

combine the different fields is a prerequisite to become more proficient in physics. 

Understanding an equation in physics is not just connecting the symbols to physical variables 

and being able to perform calculations and operations with that equation, it involves bridging the 

gap between a mathematical expression and its physical meaning and integrating the equation with 

its real-world implications [1].  This requires more than the sum of mathematics and physics and 

has proven to be challenging for students. 

The relationship between mathematics and physics is an active research area in PER. 

Contributions span theoretical frameworks that describe the interplay [e.g., 2, 3], empirical 

research on students’ challenges and views [e.g., 4, 5] and studies focusing on the pivotal role 

(mathematical) representations play in describing physical phenomena [e.g., 6, 7]. 

In this symposium, all presented studies are carried out with university students. We discuss 

several aspects of the intricate relationship between mathematics and physics using different 

theoretical lenses and methodologies. Each of the contributions starts from the idea that both 

disciplines are deeply connected. This implies that we do not see mathematics as ‘a tool’ for 

physics but rather see both in continuous mutual interaction and as such shaping each other.  

Contributions in the symposium 

The first contribution discusses students’ reasoning on the Laplacian in the context of the heat 

equation.  The authors start from APOS theory, a framework in mathematics education research 

describing mental constructions learners have to carry out to build an understanding of a 

mathematical concept, and combine it with physical concepts students should understand. By 

applying this framework, they designed a hypothetical trajectory for second year students majoring 

in Physics and Mathematics to learn and understand the Laplacian of a temperature distribution.  

In this trajectory, the coordination of 2nd partial derivative as rate of change of rate of change and 



the differential approach to the divergence of the gradient plays a pivotal role. The validity of the 

hypothesized trajectory was checked using task-based think aloud interviews. 

 

Both the second and third contribution focus on graphical representations in physics. In the 

second study, student understanding of graphical representations of position-time, velocity-time 

and acceleration-time relations are studied in the context of motions with non-constant 

acceleration.  It is well-known that analyzing kinematics graphs is hard for students and the 

challenges extend beyond linear motion.  In the presented study, second year engineering students 

were asked to answer open-ended questions on motions with non-constant acceleration and their 

answers were analyzed using a phenomenographical approach focusing on the extraction, 

discrimination and interpretation of the graphs. 

In the third contribution, we switch from students interpreting graphs to students constructing 

graphs: a series of questions relating to different hypothetical physics experiments were developed, 

where students were given a diagram and a piece of text describing an experiment and were then 

asked to complete a partially drawn graph of the predicted outcome. Along with drawing the graph, 

students were asked to explain why they had chosen that way to do so. Shapes of the drawings and 

explanations were analysed and will be discussed.               

 

In the last presentation, physics quantitative reasoning (PQL) – the skills and habits of mind for 

the sophisticated use of algebraic mathematics to describe the world – is central. Two instruments 

to measure PQL, the PIQL for calculus based physics and the GERQN for algebra-based physics, 

were translated in Dutch and administered in English and Dutch to several student populations 

both in the U.S. and Europe. Conclusions both from the translation process and the administration 

will be discussed. 
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Abstract. The 2D heat equation describes how the temperature at any point on a plate evolves due 

to heat conduction. Our goal is to develop a research-validated learning path that supports students 

in developing a conceptual understanding of the 2D heat equation. The Laplacian of the 

temperature is a key concept in the 2D heat equation. Our previous research revealed that students 

struggle with understanding the Laplacian in mathematics and physics contexts. We have utilized 

the APOS framework and proposed a genetic decomposition that comprises both mathematics and 

physics principles. More specifically for the Laplacian, we hypothesize that coordinating second 

partial derivatives with the differential approach to divergence of gradient is important. An 

interview study validated this hypothetical genetic decomposition and revealed that only few 

students adopted a different approach to comprehend the Laplacian. 

Introduction 

 

The 2D heat equation describes how the temperature distribution in a 2D plate evolves over 

time due to heat conduction. Heat conduction is described by Fourier’s Law which characterizes 

the relationship between heat flux density 𝑞⃗ and the gradient of the temperature 𝛻⃗⃗𝑇: 

𝑞⃗ = −𝑘𝛻⃗⃗𝑇.    (1) 

Using the divergence theorem, Fourier’s Law, and the rate of change of thermal energy over 

time, we obtain the heat equation in 2D:  
𝜕𝑇

𝜕𝑡
= 𝛼∇2𝑇 ,    (2) 

where 𝛼  is the thermal diffusivity. A correct interpretation of the Laplacian is crucial to 

conceptually understand the heat equation. The Laplacian may be calculated as the sum of second 

partial derivatives (2nd PDs) with respect to spatial variables, e.g. x and y. This calculation relates 

the Laplacian to the spatial variation of temperature between a point and its surroundings. If ∇2𝑇 >
0, the temperature at a point is lower than the average temperature of the surrounding area. The 

Laplacian is equal to the divergence of the temperature gradient. Physically, it is a quantity 

proportional to the net heat flux density at a point. In a previous study [1], we found that students 

struggle with interpreting the Laplacian. Our goal is to design a research-validated learning path 

aimed at addressing their challenges. 

Theoretical Framework and methodology 

 

 
 

 

 

 

 

 

 



Fig. 1. Preliminary genetic decomposition of the Laplacian of temperature 

To further study students’ reasoning on the Laplacian in the context of the heat equation, we 

designed a hypothetical model of mental constructions that students need to carry out to learn and 

understand the Laplacian of a temperature distribution. We used the APOS framework from 

mathematics education research where such a hypothetical model is called a genetic decomposition 

(GD). We proposed a preliminary GD of the Laplacian (fig 1) comprising both mathematics and 

physics concepts [2] and emphasizing 2nd PD and heat conduction as pre-requisites. We do not 

delve into other pre-requisites in this paper. Our GD highlights the importance of understanding 

the concavity of a graph, interpreting rate of change of rate of change, comparing slopes of tangents 

in the vicinity of a point, discriminating between heat and temperature, and grasping Fourier’s law. 

It suggests the need to conceptualize the summation of spatial 2nd PDs of temperature as the 

"average bending". Furthermore, it highlights the coordination between the differential approach 

to the divergence of a temperature gradient vector field and the rate of change of the rate of change. 

We hypothesize that understanding this coordination leads to interpreting the Laplacian of the 

temperature as a quantity proportional to the net heat flux through a closed boundary in 2D space. 

To test this hypothetical learning trajectory, we designed questions that probe these mental 

constructions. Eight students were chosen to take part in task-based think-aloud interviews. 

 

 
 

Fig. 2. Sample from questions 

designed to probe mental 

constructions of the GD. 

 

 

 

 

 

Findings and conclusion  

 

As hypothesized, the coordination of 2nd partial derivative as rate of change of rate of change 

and the differential approach to the divergence of the gradient, although challenging for students, 

proves to be important to develop an understanding of the temperature Laplacian. Only a few 

students used a different path to understanding originating directly from an understanding of 

Fourier’s law. With these findings, we are closer to a more stable genetic decomposition of the 

Laplacian that accounts for students' reasoning and the difficulties associated with prerequisite 

concepts, and how they progress toward understanding the Laplacian. Details on student reasoning 

will be shown in the presentation. 
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Abstract. The aim of this work is to analyse the difficulties of Chilean students related to the 

treatment of graphical representation (position, velocity, acceleration vs. time) for the subject of 

kinematics of non-constant acceleration. This research has been carried out by means of a peer-

validated open-ended questionnaire. In this study, we present three of the 12 questions that make up 

the complete questionnaire. These are the three questions that ask students to extract, discriminate 

and interpret data from graphs so that by treating them they can base their answers using graphs and 

explanations. Phenomenographic analysis allowed categorization of students' reasoning in their 

responses. Initial analyses show that despite the fact that about one third of the students answer the 

questions correctly, the reasoning reveals confusions between physical concepts and application of 

rote learning strategies without physical meaning. These findings would guide educators in future 

learning itinerary designs. 

 

Introduction  

Within Mechanics, analysing the physics of motion with variable acceleration is essential for 

university students to understand how objects vary in position, velocity, and acceleration over time. 

However, this understanding poses intrinsic challenges, especially when addressing the graphical 

and algebraic representations used to describe such phenomena[1]. Despite these representations 

being crucial for modelling and predicting the behaviour of systems under these conditions, their 

interpretation and elaboration can be enigmatic, partly due to the complex nature of this type of 

motion [2]. 

Graphical representations are widely used as visual aids to unravel aspects of motion. However, 

deciphering and analysing these graphs is not a straightforward task. Students are challenged to 

understand curves representing changes in velocity over extremely small-time segments, 

demanding a solid and detailed comprehension of the underlying physical principles. This 

challenge extends beyond linear motion and manifests in a variety of contexts and scenarios [3].  

Therefore, the aim of this study is to examine the difficulties and reasoning of second-year 

engineering students in Chile in order to detect learning difficulties in the treatment of the 

information (extract, discriminate and interpret) into graphical representations of position, 

velocity, and acceleration versus time while learning concepts of kinematics with non-constant 

acceleration [4]. 

 

Experimental design and methodology 

In this study, the participation of 120 students was analysed. The students were enrolled in 

a traditional second year of physics course at a private university in Chile. Non-constant 

acceleration motion was taught for four weeks and was assessed in an end of chapter problem 

based final exam. Data was collected after the four weeks of instruction and before the final exam 

during an in-person class. To address the aim of the research, a 12 questions open-ended 



questionnaire was developed, focusing in the learning objective regarding different representations 

(algebraic and graphical) and the treatment and conversion between them [4]. In this work we are 

presenting questions 8, 9 and 10 related to de graphical representation treatment focusing in the 

extraction, discrimination and interpretation of the data in graphical representations of position, 

velocity, and non-constant acceleration over time. The questionnaire, peer-validated by experts in 

Physics and Physical Education Research, facilitated enhancing its robustness and clarity.  

Phenomenographic analysis was carried out [5] to define students’ explanatory categories 

following the needed steps in the data analysis [6]. The process of definition, refinement and 

validation of categories was done by different researchers. The reliability of the analysis was 

assessed using Cohen's kappa coefficient, yielding an average value of 0.95. 

 

Findings 

The phenomenographic analysis of students' reasoning in response to the open-ended 

questionnaire identifies explicative categories in the treatment between initial and final graphical 

representation in the analysed three questions. The results are shown in table 1. 

 
Explanatory category % of answers 

Q8 Q9 Q10 

Extract, discriminate and interpret information from graphs 25 35 37 

Uses algebraic tools (Derivative, slope,…) without physical meaning 21 23 18 

Misunderstood physical concepts as trajectory, velocity, acceleration 37 32 29 

No answer 17 10 16 

Table 1. Percentages of answers in each category for the question Q8, Q9 and Q10. 

 

About one third of the students extract, discriminate and interpret information correctly and 

justify their answer. However, about 20% of students use the concept of derivative or slope without 

any physical meaning. In addition, another third of students confuses basic concepts of kinematics 

such as trajectory, velocity or acceleration. 

 

Conclusions 

In university mechanics physics teaching, instructors should not assume that the conversion 

between representations is automatic, as students encounter difficulties in interpreting, 

discriminating, and extracting information from non-constant kinematics graphs. We conclude that 

the identified difficulties can guide the design of teaching learning sequences based on the learning 

demands that will be defined based on this evidence. 
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Abstract. In this talk we explore the thought processes students engage in when asked to draw 

graphs representing a qualitative physics scenario. We presented first year undergraduate students 

with a hypothetical physics experiment and asked them to sketch a graph of what they predicted the 

results would look like. We also asked them to give a written explanation as to why they drew the 

graph that way. We have analysed their responses under different theoretical frameworks based on 

the knowledge-in-pieces framework. 

Introduction  

Despite a long tradition in physics and mathematics education research on graphing, little is 

known about student construction of qualitative Cartesian graphs in physics contexts. We have 

started a systematic investigation of what students attend to when they draw graphs pertaining to 

a hypothetical experimental setup. Recently we analysed how the students represented equal 

distances on a track, beaker, or wire in their graphs, and found that students drew unequal intervals 

on the position axis to indicate unequal time or resistance intervals [1]. We extend this research to 

analyse what shapes students drew and why. 

 

We initially posed a variety of questions involving different experimental setups, ranging from 

everyday scenarios to more abstract physics experiments. Whilst we discovered that context plays 

a huge role in whether or not students draw an appropriate graph, we saw that in all cases a large 

number of students drew straight line graphs where a curved graph would have been the correct 

response. 

 

In an attempt to better understand what caused students to draw straight lines instead of curves, 

we posed the same hypothetical experiment to different groups of students but phrased the 

accompanying text differently to see what effect the wording had on the students. We asked 

students about hypothetical experimental set-ups in four different ways: (1) the original wording, 

in which the students are given a written and pictorial description of the experiment and are asked 

to complete a graph and explain their answer, (2) the original wording accompanied by a detailed 

narrative describing what happens throughout the experiment, (3) the original wording in a 

multiple choice version that allowed students to see a correct answer, and (4) a version where 

students were asked to explain what would happen before they drew the graph, in addition to the 

original wording. Interestingly, we saw that the posing of the question had little effect on students’ 

ability to recognise and draw the correct graph. 

 



Theoretical framework and methods 

We administered the questions in midterm and end-of-semester assessments. The shapes 

of the graphs students drew could be categorised as curved, straight line, or other, with the former 

categories typically capturing 80% to 90% of the responses. One researcher coded the students’ 

explanations in an emergent coding scheme and created a first version of a codebook. 

The codebook that emerged is based on knowledge-in-pieces (Hammer, 2005). We note 

that recently analysis of students’ reasoning with graphs in chemistry contexts has similarly 

utilised a resources framework (Rodriguez et al, 2021). Two other researchers coded a subset of 

the responses independently. Comparing coding helped us refine the codebook. A second iteration 

in which we coded a different subset of responses independently yielded high inter-rater reliability. 

Findings and conclusions 

We found that irrespective of how the questions were phrased, roughly equal fractions of 

students chose straight and curved graphs to represent the position of a ball rolling down an uphill 

or downhill track or the change in water level when a narrowing or widening object is placed inside 

a beaker when water is poured into it. We will report on some interesting correlations between 

elements of students’ reasoning and the graph they drew. 
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Abstract. Quantitative literacy – the ways in which one uses mathematics to describe the world 

around them – is an essential skill in physics. We have translated two inventories, one for calculus-

based physics and one for algebra-based physics, into Flemish to compare Belgian, Irish, and U.S. 

students and pre-service teachers’ quantitative literacy in physics contexts. Pilot instructional 

materials that may help to improve students’ PQL are discussed. 

Introduction 

Quantitative reasoning is an essential skill in physics. Quantitative literacy is a term from 

mathematics education research which describes the nuanced ways that experts use foundational, 

algebraic mathematics to represent the world around them [1, 2]. In physics, these skills and habits 

of mind are referred to as Physics Quantitative Literacy (PQL) [3]. Prior work has identified three 

facets of PQL: reasoning about signs and signed quantities [4], proportional reasoning, which is 

defined as reasoning about linear and inverse relationships [5], and covariational reasoning, which 

is defined as reasoning about how small changes in one quantity affect changes in another quantity 

[6-8]. Recent research has produced an assessment of PQL called the Physics Inventory of 

Quantitative Literacy (PIQL) [8-9], and an algebra-based version of the assessment called the 

Generalized Equation-based Reasoning inventory of Quantity and Negativity (GERQN) [10]. 

Administration of these two assessments in the United States has shown that traditional physics 

instruction is unlikely to improve students’ PQL on its own – direct instruction about graphical 

and symbolic representations, and their meaning in physics, is required to help students learn how 

to reason mathematically in physics contexts [8].  

Historically, European school systems have incorporated higher levels of conceptual 

mathematical reasoning in pre-college instruction. To probe how this difference in cultural context 

may change students’ experiences in college physics courses, we administered the PIQL to nearly 

identical populations in the United States and Belgium. Preliminary results suggest that Belgian 

students are likely to earn higher scores on the assessment. In particular, these students tend to 

have higher correct response rates for items that were designed to measure covariational reasoning. 

However, neither population saturates the test. We suggest that these early results are indicative 

that there may be some things that we can learn from the Belgian school system, and there is still 

significant room for improvement in both the U.S. and Belgium. 

Methods and Findings 

One concern with our preliminary findings was that both populations took the PIQL in English. 

To see if taking the assessment in ones’ non-native language had a significant impact on the 

difference in student scores, we have translated and validated the PIQL into Flemish. During the 

translation process, it became clear that there were ways both versions – English and Flemish – 



have high levels of reading comprehension. Therefore, we adjusted the language use in both 

versions to be more easily understood. These results contribute to an on-going effort to ensure the 

assessments measure mathematical reasoning, and do not accidentally measure as students’ 

proficiency in test taking more generally. In our presentation of the translation, we will also discuss 

patterns observed during faculty focus groups and individual student interviews used to validate 

the Flemish PIQL and compare these to the patterns observed when validating the English version 

in the United States.  

 The ultimate aim of this project is to identify ways in which physics instructors can help 

their students learn to reason mathematically in physics (and other science) contexts. We are using 

the results from the U.S. and Belgian administrations of the PIQL to inform the development of 

instructional activities that may help students learn to reason this way. These activities are being 

used as part of physics instruction and physics teacher preparation programs in the U.S., Ireland, 

and Belgium as an initial step towards evaluating whether they improve students’ PQL and to 

expand our goal of comparing the development of PQL across cultural contexts. In this 

presentation, we will share reflections from the activities and compare assessment scores across 

the teacher preparation populations. 
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