4th World Conference on Physics Education 2024, Kraków, Poland

26.–30. 8. 2024 Jagiellonian University, Auditorium Maximum, Kraków

Elementary particles in an introductory course on Quantum mechanics

Ivan Melo

University of Žilina, FEIT, Slovakia

Motivation & challenge: why particles?

- atoms of todayfascinating properties

- not an easy topic

Motivation & challenge: what is a particle?

If a student asks physicists, he/she might get very different answers, including

- 1. a point-like object with mass and various charges
- 2. particle is what we see in the detector
- 3. an irreducible representation of the Poincare group
- 4. a (collapsed) wave function
- 5. a minimum excitation of a quantum field

I discuss strong and weak points of these definitions

→ combine diverse definitions into a coherent whole

1. a pointlike object with mass and charges

- introduces players
- can compare with periodic table of elements
- mysteries of Standard model
- connection to energy content of the Universe

- remains at the surface
- difficulty with spin
- difficulty with many charges
- difficulty with gauge

2. ... it is what we see in the detector

Individual photons recorded by an intensified CCD camera [1]

High energy photons in ATLAS detector [2]

2. ... it is what we see in the detector

- straightforward description of reality
- stimulates philosophy: can instruments alone reveal nature of reality?

- not the particle we see but the signal it generates
- does not explain things, need of theoretical picture

The way particle physicists see short-lived particles [3] [3] ATLAS experiment preliminary analysis of H -> y y in 2012

3. irreducible representation of Poincare group

Precise definiton

Seems too formal to explain

4. a (collapsed) wave (function)

Double slit experiment

a) expectation for pointlike particles

e) wave-particle duality

b) Young's observation (wave behaviour)

d) detectors to find out the path of a single photon

4. a (collapsed) wave (function)

Collapse of the wavefunction

- double slit experiment goes to the heart of QM mysteries
- connects to "what we see in the detector"
- goes to the probabilistic nature of QM

?

5. a minimum excitation of quantum field (example: photon in a box)

photon is quantized electromagnetic wave with minimum amplitude (m = 1 state)

5. a minimum excitation of quantum field (example: photon in a box)

$$E = \frac{1}{2}m\omega^{2}x(t)^{2} + \frac{1}{2}m\dot{x}(t)^{2}$$
$$= \frac{1}{2}kA^{2}$$

$$E = E_n = \hbar\omega(m + \frac{1}{2}), \quad m = 0, 1, 2, 3, \dots$$

classical oscillator (HO)

quantum oscillator

5. a minimum excitation of quantum field (example: photon in a box)

standing elmag. wave is formally equivalent to classical HO

Conclusions

Inclusion of particles in an introductory QM course after hydrogen atom

- 1. a point-like object with mass and various charges
- 2. particle is what we see in the detector
- 4. a (collapsed) wave function

Solid ground

5. a minimum excitation of a quantum field (work in progress)