MAMMA achievements in 2010

New results since RD51 Collaboration meeting in Bari

Marcin Byszewski On behalf of the MAMMA collaboration

Marcin Byszewski, CERN, RD51 MiniWeek

Outline

- New electronics
- Resistive strips width

TEST BEAM – OCT / NOV 2010

The setups in H6 in Oct-Nov 2010

Two sets of micromegas with resistive coating

CEA Saclay

CERN et al.

CEA Saclay (1)

х

Detectors Characteristics

Non resistive Telescope: Gas Ar + 2% C4H10

Det	name	pitch	Circuit type
5	proto6	0.5mm	non resistive
6	proto7	.25mm	non resistive
7	proto l 2	.25mm	non resistive
8	protoll	0.5mm	non resistive
9	proto 10	0.5mm	non resistive
10	proto l 3	0.5mm	non resistive

Tests summary

High rate exposures:
Pions of 80 GeV (-) and 120 GeV (+)
Rates: 25–250kHz/cm2

High Voltage scan:

HV_{mesh}=330V, HV_{drift}=470V. HV_{mesh}=350V, HV_{drift}=500V. HV_{mesh}=370V, HV_{drift}=530V. HV_{mesh}=390V, HV_{drift}=560V.

Track angles 0°,20°,30°.

Detector meeting, 18 Jan 2011

Resistive on Chamber test:

Gas Ar + 2% C4H10 + 3% CF4

Det	name	pitch	Circuit type
1	SLHCR10	2.0mm	kapton 2Mohms
2	SLHCR12	0.5mm	strips 300kohms
3	SLHCR17	1.0mm	resistive type "Joerg"
4	SLHCR14	1.0mm	strips 300kohms

J. Manjarrés et al. (Irfu, Saclay)

CEA Saclay (2)

-○ "Saturation" → "Electronic noise"; "3 different regimes" → "typical maximum beam profile variation with cuts on signal value"

Pedestal Stability Studies

- Pedestals are calculated for all channel, each run (same voltage conditions)
- -• We choose the σ 's of Run 8158 as the reference ones.
- Each Run takes around 2h. So between Run 8158 and 8167 we have ~10h
- -• The sigma seems to be very stable 2%.

Detector meeting, 18 Jan 2011

CEA Saclay(4)

Clustering & charge reconstruction

lunes 17 de enero de 2011

The setups in H6 in Oct-Nov 2010

CERN et al.

We have simultaneously read up to four chambers.

One APV chip per chamber.

- R11 R13 'old' small resistive chambers
- R14, R15 new chambers

Resistive Micromegas

R11-R13 Standard small 100 x 100 mm² chambers Readout strips 250 μm pitch

Resistive strips along readout strips.

R14, R15 Small 100 x 100 mm² chambers Readout strips 250 µm pitch

R(GND) (MOhm)

R(strip) (MOhm/cm)

Mesh pillar spacing

Varied width of the resistive strips. 150 (1), 400 (2), 650 (3), 900 (4) μm and **18 mm (72 r/o strips) (presented data)**

R14

100

10

2.5mm

10mm

Mesh oscillation R15 for high HV – spacing too large

New readout system

Scalable Readout System:

4x APV25 chips (128ch) 4x HDMI cables 1 FEC (max 16 chips)

DAQ - ALICE's DATE connected by Gigabit Ethernet

We got it few days before the test beam start... it "just worked" and worked reliably.

Test beam set up

We have simultaneously read up to 4 chambers, one APV chip per chamber

- R11 R13 'old' small resistive chambers;
- R14, R15 new

Representative raw data

Since test beam, we are very happy users of the SRS :

- simple and reliable system
- clean data with only two steps: pedestal subtraction, zero suppression

Strip Charge, Time

A simpler example

18/1/11

Strip Charge

Strip charge - maximum value of Q for all time bins

Time information

Strip charge - maximum value of Q for all time bins Time - time bin of maximum value of Q (strip)

Test Beam Data - Odeg

4 chambers in a row Track at Odeg incidence angle

Marcin Byszewski, CERN, RD51 MiniWeek

Test Beam Data - Odeg

4 chambers in a row Track at Odeg incidence angle

18/1/11

To neighbouring r/o strips charge comes

3yszewski, CERN, RD51 MiniWeek

Test Beam Data - 10deg

Track at 10deg incidence angle

Marcin Byszewski, CERN, RD51 MiniWeek

Test Beam Data - 40deg

Track at 40deg incidence angle Remark: strip numbering is local for each APV 62 Time APV 0 <u>s_0</u> Entries t 0 Scatter APV 0 H'1 **n**: vont: 19 Entries 19 Mean RMS 38.6 4.197 Mean x 42 Q(strip) R11 Time(strip) Mean y 7.737 18 RMS x 5.477 20 RMS y 3.416 1600 18 1400 1200 1000 800 600 400 200 20 40 60 80 100 120 20 80 100 120 40 60 Scatter APV 1 Time APV 1 s_1 t_1 14 Entries Entries 14 69.56 Mean x 68.93 Mean 22 R12 RMS 5.045 Mean y 8.143 RMS x 5.203 20 3.182 1200 RMS y 1000 800 600 × X 400 200 20 40 60 80 100 120 20 60 80 100 120 40

Marcin Byszewski, CERN, RD51 MiniWeek

Non-resistive prototype

CSC-SIZE CHAMBER

See Monday talk by Joerg Wotschack

Large Chamber - design

Chamber with same dimensions as large CSC, but only one half is equipped with MM (owing to present limit of machines in CERN PCB workshop)

First half-chamber is non-resistive (test of procedure)

Marcin Byszewski, CERN, RD51 MiniWeek

Micromegas with 2D readout

R16

R16 - 2D readout

Design of a standard resistive MM.

Modified by an additional layer of readout strips perpendicular to resistive strips.

X strips: 250 μm pitch 150 μm width Y strips 250 μm pitch 80 μm width

Resistivity values $R_G \approx 55 M\Omega$ $R_{strip} \approx 35 M\Omega/cm$

Resistive strips

R16 – 2D readout (10x10cm²)

R16 Event Display (⁵⁵Fe γ)

Effect as in R15 (and R14):

The charge spreads to the neighbouring r/o strips that are covered by the same wide resistive strip

R16:17/h/e1charge spreads along resistive strips to the neighbouring Y r/o strips

Other activities

Software for:

- Data acquisition (afternoon talk)
- Data analysis

Summary

Test beam data with SRS Electronics

- Reliable system
- Clean data

Large Chamber

• Non-resistive prototype

• Resistive prototype is being made

R14-R15

- Wide resistive strips allow charge dispersion
- Mesh pillars spacing of 1cm too big

2D readout in R16

- We can read two coordinates in the same plane
- Charge dispersion along resistive strips

Other activities

• Software DAQ and Analysis