

Status of Nikhef activities

Matteo Alfonsi Martin Fransen Harry van der Graaf Fred Hartjes Wilco Koppert Gijs Hemink Anatoli Romaniouk **Rolf Schön** Rob Veenhof

- Analysis August 2010 testbeam
 - Performance Gossip/GridPix
 - Drift velocity and diffusion
 - GridPix as L1 trigger in Atlas
 - Particle ID
- **Other subjects**

- Photoelectric GridPix
- GridPix production
- GridPix R.O. (ReLaXd)
- Xenon WIMP search
 - **Polapix (polarized X-rays)**
 - Status mini HV unit

RD51 mini workshop, CERN, January 18, 2011

Gossip testbeam August 12 – 22, 2010

High granularity pixel chip

Principle of Gossip

- Cell pitch $55 60 \mu m$ in X and Y
- Thinned to $50 100 \mu m$ (not for this testbeam experiment)
- Detection medium: drift gap ~ 1 mm high
- Signal (~6 primary electrons) enhanced by gas avalanche from a grid
 - Gas gain 5000 10000

Reconstructing track segment

Track characterized by φ , θ and the crossing point (X, Y) with the reference plane

Timepix as a pixel chip

TimePix

- Derived from MediPix (X-ray detection)
- Matrix of 256 x 256 pixels
- 55 μm pitch
- => 14.08 x 14.08 mm² sensitive area
- Common clock (100 MHz) to measure drift time for each pixel
- Also <u>Time-Over-Threshold</u> (TOT) mode to measure charge signal spectrum

Not optimized for time measurements => much time walk

- Postprocessing
 - 7 μ m Si doped Si₃N₄ for spark protection
 - Amplification grid (InGrid) on TimePix

Aim of the Gossip testbeam experiment in August 2010

1. Gossip performance

- Position resolution
- Angular resolution of track segment
- Track detection efficiency
- Dependence on gas gain (V_{grid})
- Double track separation

2. Characterisation of DME/CO₂ 50/50 mixture

- Primary ionisation/cluster density
- Drift velocity
- Transverse diffusion

3. Cathode emission

Detecting knock-off electrons from cathode surface

Using Gossip/GridPix telescope as a reference

- Measurements done with Gossip 2 (1 mm gap)
- Define track with Gossip 1 and 3 (1 mm gap)
- Reject bad events using the Gridpix detector (19.3 mm drift gap)
 - Wrong angle (background tracks)
 - Outside fiducial volume
 - Multiple tracks (showers)

Chamber gas: DME/CO₂ 50/50 Garfield simulations

Calculated diffusion (σ) and drift velocity (V_d)of DME/CO₂ 50/50 vs electrical field (E)

DME/CO₂ 50/50

- Very slow and "cool" gas
- High drift field required
- Very low diffusion
- Suited for TPC

- Drift fields used in Gossips
 - 2 kV/cm (lowest diffusion)
 - **6 kV/cm** (Vd = 50 μ m/ns)
 - LHC tracking

Analysis of the August 2010 testbeam

Wealth of useful data

Analyzed

- Angular resolution of Gossips and GridPix
- Drift velocity and diffusion for DME/CO₂ mixture
- Position resolution at 0°
- Related effects: Time-walk

Not yet done

- Position resolution at angles # 0°
- Primary ionization and possible electron attachment
- Parallel tracks in one Gossip
- Double track resolution from showers by upstream experiment (thick GEM tracker)

 In total 60 runs containing ~250k events

 Almost all done with DME/CO₂
50/50 and 150 GeV muons

Last 4 runs with $Ar/iC_4H_{10} 80/20$

■ 46k events

■ ~3k of them were hadrons

					Run ove	erview (Gossip k	beam te	st Augu	ist 2010)								
run#	ctart time	ctart data	# of over	Val	V/~2	V/~2	Val	Vf Gossin	Vauard		a 1	~?	~ 3	~ 1		Analysed			
1	10.11	12-8	# 01 even	580	580	580	Vg4 500	780	540	2000	45		45	u4	Bas	Analyseu			
2	15.41	12-8	1696	580	580	580	500	780	540	2000	45		45	μ 1 Δι	5 DME/CO2	,			
3		12-8	654	580	580	580	500	780	540	2000	0				DME/CO2				
4		13-8	1463	580	580	580	500	780	540	2000	0								
5		13-8	1023	580	580	580	500	780	540	2000	0						from ev 3221	tests hea	m tunin
6		13-8	1023	600	600	600	530	800	630	4390	0		0		DMF/CO2	x	inoin et olle		
7		13-8	788	450	450	450	450	650	600	4310	45	45	45	5 4 ¹	5 DMF/CO2		run in TOT m	ode	
8		13-8	1340	450	450	450	450	650	600	4310	45	45	45	4	5 DMF/CO2	x			
9		13-8	773	450	450	450	450	650	600	4310	45	45	45	5 4	5 DME/CO2	2			
10		13-8	714	470	470	470	470	670	620	4330	45	45	45	5 4	5 DME/CO2		run in TOT m	ode	
11		13-8	1026	470	470	470	470	670	620	4330	45	45	45	5 45	5 DME/CO2	x			
12		13-8	4026	470	470	470	470	670	620	4330	45	45	45	5 45	5 DME/CO2	2			
13		14-8	770	490	490	490	490	690	640	4350	45	45	45	5 45	5 DME/CO2		repair timing	z + rot. D	ICE. TOT
14		14-8	1022	490	490	490	490	690	640	4350	45	45	45	5 45	5 DME/CO2	x			
15		14-8	1017	490	490	490	490	690	640	4350	45	45	45	5 4	5 DME/CO2	2			
16		14-8	741	510	510	510	510	710	660	4370	45	45	45	5 45	5 DME/CO2		run in TOT m	ode	
17		14-8	1612	510	510	510	510	710	660	4370	45	45	45	4	5 DMF/CO2	x			
18	14:19	14-8	1388	510	510	510	510	710	660	4370	45	45	45	4	5 DMF/CO2		peak at 90 ns	hopeful	lv cured
19		14-8		530	530	530	520	730	670	4380	45	45	45	5 4 ¹	5 DMF/CO2		run in TOT m	ode	,
20	17:40	14-8	4362	530	530	530	520	730	670	4380	45	45	45	4	5 DMF/CO2	x			
21	11110	14-8	1502	550	550	550	530	750	680	4390	45	45	45	5 4 ¹	5 DMF/CO2		run in TOT m	ode	
22	20.28	14-8	2188	550	550	550	530	750	680	4390	45	45	4	μ Δ	DME/CO2	x			
23	LOILO	14-8	2100	570	570	570	530	730	680	4390	45	45	45	ζ Δι	5 DME/CO2		run in TOT m	ode	
24	22.12	14-8	2059	570	570	570	530	770	680	4390	45	45	45	μ Δ	DME/CO2	x		ouc	
25	23.27	14-8	17728	590	590	590	530	790	680	4390	45	45	45	ζ <u>Δ</u> ι		x	Run overnig	nt until 8	06
26	10:32	15-8	339	590	590	590	530	790	680	4390	45	45	45				run in TOT m	ode	00
20	10:52	15-8	348	600	600	600	540	800	690	4330	43	43	40	γ 4. ζ Δι	DME/CO2		run in TOT m	ode	
28	12:10	15-8	2275	600	600	600	540	800	690	4440	45	45	45			× ×		ouc	
20	14.52	15-8	22/3	610	610	610	550	810	700	4450	45	15		· · ·		y y			
30	14.52	15-8	824	610	610	610	550	810	700	4450	43	45	4.	· · ·		^	run in TOT m	ode	
30		15-8	60/	620	620	620	560	820	710	4430	43	43	40	// 4.	DME/CO2	-	run in TOT m	ode	
37	10.40	15-8	2251	620	620	620	560	820	710	4420	45	45	4.			v		loue	
32	15.40	15-8	2231	620	620	620	560	1220	710	4420	43	43	40	· 4		x x			
34		15-8	4270	620	620	620	560	1220	710	4420	40	40	40	1					
35		16-8	5830	620	620	620	560	820	710	4420	10	40 45	10	10		,	DICE trip		
36	-	16-8	4015	620	620	620	560	820	710	4420	10	/ 43 N 0	10	10		v	DICE UID		
37		16-8	4013	620	620	620	560	1220	710	4420	10		10	10		x x			
20	-	16.0	4550	620	620	620	500	1220	710	4420	10	5 75	10	1		, A			
30		16-8	17010	620	620	620	560-> 550	820	710	4420	10	5 75	10	10			DICE trip pro	hloms	
40		16-82	1/515	620	620	620	520	1220	670	/ 4420	10	11 5	10	1		,	DICE reduced	d after tri	nc
40		17.0	4004	620	620	620	520	920	600	4300	10	11.5	10	10			broad boam	low into	ps pcity
41	-	17-8	5001	620	620	620	540	820	600	43002	10	23	10	10			~ 10x more n	articles	iisity
42		17-8	5307	620	620	620	540	1220	600	14350:	10	23	10	10		,	10x more p	articles	
43		17-0	20955	620	620	620	540	920	600	4440	10	23	10						
44		18-8	6442	620	620	620	540	820	600	4440						Ŷ	gasflow to 65	5 ml/min	
45		18-8	7007	620	620	620	540	820	690	4440	0						lower thresh		
40		10-0 10-0	1040	620	620	620	540 E40	820	600	4440) 1(^	Vf of por2 at		
47		19-8	08540	620	620	620	540	820	600	4440			()) 1() 1(Vf of pos2 at	01/	
40		19-8	22E0	620	620	620	540	820	600	4440		, 4J	/0	, 10		1	Vf of pos2 at	01	
+7 50	11.44	20-8	4440	620	620	620	540	820	600	4440	1	, 43 . /E	43	, 10		,	Vf of pos2 at	01/	
51	11:44	20-0	2/10	620	020	620	540	820	600	4440	45	45	45				PillarDiv doa	d P3 ano	rkv
52	14.30	20-0	2410	620		620	540	020	600	4440	43	43	43				Hadr CCVA-4	u, r 3 sµd	
52	10.20	20-0	292	620		620	540	820	690	4440	45	45	45	, (; ,			Hadrone r	field on f	072;300
22	10:38	20-0	3832	620		620	540	820	690	4440	45	45	45				choot mission	neid on F	- 3 and F
54	18:07	20-0	2/44	620		620	540	820	690	4440	45	45	45) ()			sneet missin	5	
55	11:2/	21-0	5381	620	620	620	540	820	690	4440							662554		
56	12:48	21-8	5314	620	620	620	540	570	450	3245		90		10		1	5C2 5.5 to PC	, SCI 2.5	oppos.
5/	18:19	21-8	634	420	420	420	350	570	450	3245			(10	JAT/IC4H10	J	150 GeV had	rons	
58	18:32	21-8	4314	420	420	ed Hari	350	570	450	3245		0	C) <u>1</u> (JAr/IC4H1	J	Hadrons => n	nuons	
59	19:50	21-8	34348	420	420	420	350	570	450	3245		0	C) 10	JAr/IC4H1	J		-	
60	9:30	22-8	11804	420	420	420	350	570	450	3245	0	11.5	0	10	J Ar/iC4H10	J			

What has been measured?

- 50k events for Gossip under 45°
 - Grid voltage scan from -510 to -620 V
 - Mostly at field 2 kV/cm
 - 2.8 k events at 6 kV/cm
 - 25 ns charge collection => LHC timing
- 10k events under 4 other angles
 - 0; 5.75; 11.5 and 23°
 - Both at drift field of 2 and 6 kV/cm
- 25k events with secondary emission detector (PillarPix)
- 44k events in GridPix under 90°
- 5k events with parallel tracks in Gossip

Typical track in Gossip 3 45° in X-Z plane

Event 124run32_4 detector 3

Event 124run32_4 detector 3

Comparing DME/CO₂ to Ar/isobutane

Tracks under 10°

Data cuts

Cuts on each detector individually

- Cuts on fitted tracks
 - Slope
 - Intercept Z=0
 - Fit residue

- Cuts on pixel hits
 - Fiducial area
 - Maximum drift time

_	Fit Cu	it Mat	rix		
0	1	1	1	-0.85	Max Z-X slope
1	-1	-1	-1	-1.1	Min Z-X slope
2	0	0	0	1	Z-X slope enable
3	0	0	0	0.03	Max Z-Y slope
4	0	0	0	-0.03	Min Z-Y slope
5	0	0	0	1	Z-Y slope enable
6	0	0	0	13	Max X intercept (Z=0, mm)
7	0	0	0	2	Min X intercept (Z=0, mm)
8	0	0	0	1	X intercept enable
9	0	0	0	11	Max Y intercept (Z=0, mm)
10	0	0	0	1	Min Y intercept (Z=0, mm)
11	0	0	0	1	Y intercept enable
12	0	0	0	1	Max X-slope residue
13	0	0	0	1	× slope residue enable
14	0	0	0	0.02	Max Y-slope residue
15	0	0	0	1	Y slope residue enable
	Gossip 1	Gossip 2	Gossip 3	GridPix	

Pixel Cut Matrix

	Gossip	Gossip	Gossip	Grid	
- 1	H	N	m	ix	(1: cut; 2: coerce)
9	1	1	1	0	Max drift time enable
8	111	111	111	0	Max drift time (ns)
7	0	0	0	1	# of hits enable
6	2	2	2	2	# of hits
5	1	1	1	1	Y fid enable
4	10	10	10	10	Y lower limit (pix)
3	245	245	245	245	Y upper limit (pix)
2	1	1	1	1	X fid enable
1	10	10	10	10	X lower limit (pix)
0	245	245	245	245	X upper limit (pix)

Gossip drift time spectra

- Should be ~ 100 ns wide
- TimePix chip suffering from time walk => extending for hundreds of ns
- Less dominant at high gain, but do not disappear

Time walk leading to excessive arrival times

- Rising edge effect: up to 50 ns delay
- Discriminator overdrive
 - Certain charge >0 is needed to let the discriminator fire

Hundreds of ns time walk possible

Excessive arrival-time hits at high gain <u>possibly</u> from cross talk by neighbours

Excessive time-walk hits (> 130 ns) normally accompanied by hit in neighbouring cell

Isolation of excessive arrival-time hits

- Often isolated at low gas gain ($V_{grid} = -510, -530 V$)
- Never isolated at high gas gain ($V_{grid} = -590$ to -620 V)

Gossip 2

Angular dependence of drift time spectrum in Gossip

- **Tail** with drift times longer than given by drift space
 - Cross talk signal just passing the threshold => long arrival time from poor time walk properties of TimePix chip
 - => out of range drift times removed in analysis
 - Drift time cut at 111 ns
 - Pile up effect at 0°
 - => Two or more electrons collected by the same pixel
 - => at 0° longer drift times are under-populated

Number of hits per track in Gossip vs grid voltage

Excessive arrival times (> 111 ns) have been cut

Tracks under 45°

Cut matrix for hit plot

- Using **GridPix** as a reference for good tracks
- Rejecting

- Empty events
- Multiple track events
- Background tracks
- Large drift time electrons in Gossips (> 111 ns)

	Fit Cut Matrix									
0	1	1	1	-0.85	JM					
1	-1	-1	-1	-1.1	Μ					
2	0	0	0	1	Z					
3	0	0	0	0.03	Μ					
4	0	0	0	-0.03	Μ					
5	0	0	0	1	Z					
6	0	0	0	13	Μ					

1	1	1	-0.85	Max Z-X slope
-1	-1	-1	-1.1	Min Z-X slope
0	0	0	1	Z-X slope enable
0	0	0	0.03	Max Z-Y slope
0	0	0	-0.03	Min Z-Y slope
0	0	0	1	Z-Y slope enable
0	0	0	13	Max X intercept (Z=0, mm)
0	0	0	2	Min X intercept (Z=0, mm)
0	0	0	1	X intercept enable
0	0	0	11	Max Y intercept (Z=0, mm)
0	0	0	1	Min Y intercept (Z=0, mm)
0	0	0	1	Y intercept enable
0	0	0	1	Max X-slope residue
0	0	0	1	X slope residue enable
0	0	0	0.02	Max Y-slope residue
0	0	0	1	Y slope residue enable
-	2	m	<u>ĕ</u> .	
ŝ	sip	sip	造	
SOS -	jos I	jos I	5	
<u> </u>				

- 1	<u> </u>		Sut M	aurix	
0	245	245	245	245	X upper limit (pix)
1	10	10	10	10	x lower limit (pix)
2	1	1	1	1	X fid enable
3	245	245	245	245	Y upper limit (pix)
4	10	10	10	10	Y lower limit (pix)
5	1	1	1	1	Y fid enable
6	2	2	2	2	# of hits
7	0	0	0	1	# of hits enable
8	111	111	111	0	Max drift time (ns)
9	1	1	1	0	Max drift time enable
_	-	N	m	×	(1: cut; 2: coerce)
	. g.	ġ.	. g .	臣	
	goss	goss	goss	Ē	
		- U			

Distribution of the number of hits per track at 45°

Angular dependence of number of hits per track

Number of hits per track at 0°

Pile up effect at 0° causing factor 2 decrease of hit pixels

Number of hits per track versus angle of incidence

Number of hit pixels per track versus the track angle

Track detection efficiency

Angular resolution at 45°

Fred Hartjes

Measured track angle versus angle of incidence

Measured track angle versus actual track angle

Angular resolution in X-Z plane still limited by time walk, minor ionization and small lever arm

In Y-Z plane accuracy gets better with increasing X-Z angle (better electron statistics)

Increasing the drift gap 1.2 mm would give better performance August 2010 testbeam Drift times cut at 111 ns

Error bars given by the

Nov 6, 2010

 σ of the Gaussian fit

Angular resolution versus angle of incidence

- Angular resolution in X-Z plane deteriorated by **limited timing properties** of the TimePix chip
- In Y-Z plane accuracy gets better with increasing X-Z angle (better statistics)

Increasing the drift gap to **1.2 mm** would give better performance

RD51 mini workshop, CERN, January 18, 201

August 2010 testbeam Drift times cut at 111 ns Error bars given by the σ of the Gaussian fit Nov 6, 2010

ref: Y. Bilevych et al., submitted to the proceedings of the 12th Topical Seminar on Innovative Particle and Radiation Detectors, Siena, Italy, June 7-10, 2010

Parallel tracks in GridPix

- GridPix under 90°
- Gossips under 0°
- 44k events
- Presently only using Gossip 3 as a reference

	F	Pixel (Cut M	atrix	
0	245	245	245	245	X upper limit (pix)
1	10	10	10	10	X lower limit (pix)
2	1	1	1	1	X fid enable
3	245	245	245	245	Y upper limit (pix)
4	10	10	10	10	Y lower limit (pix)
5	1	1	1	1	Y fid enable
6	2	2	2	2	# of hits
7	0	0	0	1	# of hits enable
8	111	111	111	0	Max drift time (ns)
9	1	1	1	0	Max drift time enable
	-	N	m	ž	(1: cut; 2: coerce)
	sip	sip	sip	Ę	
	<u> 8</u>	<u> So</u>	õ	ā	
			<u>ت</u>		

	Horizontal Fit Cut Matrix									
0	1	1	1	0.05	Max X-Z slope					
1	-1	-1	-1	-0.05	Min X-Z slope					
2	0	0	0	1	X-Z slope enable					
3	0	0	0	0.03	Max X-Y slope					
4	0	0	0	-0.02	Min X-Y slope					
5	0	0	0	1	X-Y slope enable					
6	0	0	0	10	Max Z intercept (X=0, mm)					
7	0	0	0	2	Min Z intercept (X=0, mm)					
8	0	0	0	0	Z intercept enable					
9	0	0	0	13	Max Y intercept (X=0, mm)					
10	0	0	0	1	Min Y intercept (X=0, mm)					
11	0	0	0		Y intercept enable					
12	0	0	0	0.3	Max X-slope residue					
13	0	0	0	1	X slope residue enable					
14	0	0	0	0.01	Max Y-slope residue					
15	0	0	0		Y slope residue enable					
	-	N	m	<u>×</u> .						
	iossip	iossip	iossip	Gridp						

Diffusion and drift velocity

Diffusion vs drift distance in GridPix

Compared to Garfield simulation

Calculated diffusion (σ) and drift velocity (V_d)of DME/CO₂ 50/50 vs electrical field (E)

Secondary emission test

- **3** different surfaces on grid of one Gossip detector
 - doped diamond
 - Cu
 - Al

Result: no significant effect seen so far, only discharges near pillars

Test beam results: Particle Identification

Two method were used 1.Total energy deposition 2.Cluster counting technique

Analysis by Anatoli Romaniouk

Pion registration efficiency as a function of electron efficiency for 1 and 2 layers of the detector. Cluster counting method.

Electron efficiency

TRD with two detector layers (total thickness ~ 40 cm) allows to achieve rejection factor of ~ **50** for 90% electron efficiency.

GridPix Tracking: Low diffusion gas (result August 2010 test beam)

DME/CO2 (50/50), 19.3 mm drift,

Incident angle of **10°**.

At **10°** incident angle an angle measurement accuracy of **0.6°** for the track projection would mean:

15% momentum measurement accuracy for P_t of **40 GeV** with one layer of a GridPix tracker/L1 trigger! • Fit through G1, G3 and GridPix \rightarrow residuals G2

Position resolution

Conclusions on analysis of August 2010 testbeam

Running experience

- All Gossips were operating reliably without any HV problem at high gain
- The (older) GridPix (mostly running at -560 V) had less good gain, but still rather good single electron efficiency
- Profited Infrastructure of remote control of HV and gas
 - Settings can be modified without asking for access
 - Values permanently logged
- Analysis results
 - Time walk probably caused by the (weak) cross talk signals just passing threshold
 - Angular resolution of Gossips determined for 5 different angles
 - Gas gap of 1.2 mm would give better result
 - Angular resolution for GridPix very good
 - 0.6° for track over < 20 mm
 - Gossips have excellent track detection efficiency (~ 99%) from -570 V on
 - Drift velocity and diffusion are close to Garfield simulation
 - Diffusion DME/CO₂ mixture very advanteous
 - Position resolution of 15 μm agrees with simulation
 - After correction for finite accuracy track definition

Other MPGD related research at Nikhef

- Photosensitive GridPix detectors
- ReLaXd R.O. replacing MUROS
- Industrial production of GridPix
- Xenon experiment (WIMP search)
- PolaPix (polarized X-rays from space)
- MiniHV (small remotely controlled HV supply for laboratory use)

Photo sensitive GridPix

- CsI layer on grid
- Collection efficiency > 90%

Thesis Joost Melay, Univ. Twente, MESA+ Jurriaan Schmitz'STW project 'There is plenty of room at the top'

Collaboration with Amos Breskin, Weizmann Institute of Science in Rehovot, Israel

ReLaXd read out

- Rapid DAQ of TimePix chip
- Replacing MUROS (R.O. rate ~ 3 Hz for 4 chips in series)
- Addressing many chips in parallel
- R.O rate of 2.8 kHz achieved in August testbeam (test detector)

ReLaXd readout board

- Features:
- Onboard power supply
- 4 chips parallel readout
- Debug terminal
- Gigabit Ethernet interface
- External triggering
- Temperature sensor

Status industrial GridPix production

- Changing technology InGrid => GEMgrid
 - Creating "pillars" by heavy over-etching
 - Getting rid of the insulated surface in the hole
- Technology transfer to SMC, Edinburgh: failure
- Technology transfer to IZM-Berlin: first working GEMGrids
- VERY good progress with first GEMgrids on 8" wafers
- Goal: to make robust, lasting GEMgrids
 - 8" TimePix wafers
 - Low price

WIMP search, bi-phase Xenon

- GridPix TPC as WIMP/ DBD detector
- Placing GridPix detectors in the gaseous phase, interleaved with PMs

Source: Direct Searches for Dark Matter, Elena Aprile, EPS - HEP, July 21 2009, Krakow, Poland

Measuring impurities in Argon

Mass spectograph TimePix chip + InGrid

PolaPix

Using a GridPix detector for the 3D detection of polarized X-ray photons

Sjoerd Nauta - Nikhef

180

X-ray Polarimeter proposed by R. Bellazzini

Distribution of direction of photo-electron of (fully) polarised X-rays

Collaboration with ECAP/University Erlangen

• GridPix as (gas-filled) photon detector for applications in space observatories

• Tracking photo-electron or Compton-electron.

• Measurement of 1 – 511 keV photons

- Photon energy
- Photon direction
- Polarization

CHAPTER 4. METHODS AND MATERIALS

Photo-electron after photon interaction

Reconstructing trajectory

 Figure 4.11: An example of a skeletonized track. On the left, the original measurement is shown, on the right the skeletonized version of the same track is shown. This picture has been made by the group at the university of Erlangen.

Status mini HV development version 2

Based on prototype studies, to be updated with final version

- Intended to supply gaseous detectors in the laboratory
- Output ~ -3 to -1000V (a) -5 μ A
- Standard negative output
 - Positive output in principle possible using same PCBs
- Current measurement in < 100 pA units
- HV stabilisation by feedback from measured current using local processor
- Ripple ~ 100 mV p-p @ -0.5 μ A and -500V
- Sophisticated ramping and trip

Status mini HV development

CANopen communication to multiple mini HVs

Two RJ45 cables to supply up to 8 miniHV units

Status mini HV development

5 prototypes built

- We are not as far as hoped
- Project delayed by
 - PCB assembly
 - Delivery time
 - Assembly errors
 - Frequent breakdown of the processor
 - Protection added now