Combination of ATLAS+CMS measurements on $\gamma\gamma\rightarrow\tau^+\tau^-$ production in Pb+Pb UPC

Yuriy Volkotrub, Iwona Grabowska-Bold

AGH University of Science and Technology, Poland

May 31, 2022

< □ > < 同 > < 回 > < 回 > < 回 >

< □ > < □ > < □ > < □ > < □ >

Introdution

Motivation

- Measurements of anomalous magnetic moments of leptons a_l = ^{(g-2)l}/₂ are sensitive to new physics
 - Dirac equation predicts g = 2, but higher-order corrections (QED, weak, hadronic loops, ...) lead to $\neq 2$
- a_{τ} is poorly constrained experimentally: -0.52 < a_{τ} < 0.013 (95% CL) DELPHI, EPJC 35 35 (2004) 159

Due to it can be sensitive to BSM effects

For example, measurements of a_e and a_μ are the most accurate.
 Difference with SM predictions observed for a_e (2.5σ) and a_μ (up to 4.2σ)

Muon g-2 Collaboration, PRL 126 (2021) 141801

(I) < (II) <

$\gamma\gamma\to\tau^+\tau^-$ production in Pb+Pb UPC

Pb+Pb UPC studies have some advantages over pp collisions:

- $\sim Z^4 \ (Z = 82, Z \approx 4.5 \cdot 10^7)$ enhancement of cross sections
- Due to **Zero Degree Calorimeter** (ZDC) (ATLAS) and **Forward Hadron** (HF) calorimeter allows to control event activity above the noise threshold
- pprox no hadronic pileup ightarrow exclusivity selections
- Low *p*_T thresholds in trigger and offline reconstruction
- Exploit $\gamma\gamma \rightarrow \tau\tau$ cross section to set limits on a_{τ}
- $\gamma\gamma \rightarrow \tau\tau$ production observed for the first time in hadron collisions at the LHC in 2022

PRD 102 (2020) 113008

(日) (同) (日) (日)

ATLAS measurement overview

- Measurement uses 1.44 ${\rm nb}^{-1}$ of 2018 UPC data at $\sqrt{s_{\rm NN}}=5.02$ TeV
- Monte Carlo simulations:
 - signal modeled with: Starlight+Tauola (Pythia8+Photos for QED FSR) samples reweighted to photon flux from SuperChic
- Event selection categorised with semileptonic decay modes:

μ 1T-SR	$p^{\mu} > 4 \text{ CoV}$ $p^{e} > 4 \text{ CoV}$
${\sf muon} + 1 \; {\sf track} \; (e/\mu/{\sf hadron} \; (``{\sf prong}"))$	$p_T > 4 \text{ GeV}, p_T > 4 \text{ GeV},$
μ 3T-SR :	$p_T > 100$ livev
muon + 3 tracks (3 hadrons (3 prongs))	$p^{clus} > 1 C_{2} \vee (p < 2.5)$
μe -SR:	$p_T \ge 1 \text{ GeV} (\eta < 2.5),$
muon + 1 track (muon + electron)	$p_T > 100 \text{ MeV} (2.5 < \eta < 4.5)$

- Only data in 0n0n ZDC category used to suppress photonuclear/hadronic backgrounds
- Simulation Starlight+Tauola reweighted to OnOn with data-driven weights

HonexComb meeting #14

Yuriy Volkotrub

May 31, 2022 5 / 11

CMS measurement overview

- Measurement uses 0.4 nb $^{-1}$ of 2015 UPC data at $\sqrt{s_{\rm NN}}=5.02$ TeV
- Monte Carlo simulations:
 - signal modeled with: MADGRAPH5 aMC@NLO(v2.6.5) (PYTHIA8 (v2.1.2)) samples reweighted to photon flux from SuperChic
- Event selection categorised with semileptonic decay mode:

μ 3T-SR :	
muon+3 prongs	$p_T^{ m vis} > 0.2 { m GeV}$
	$0.2 < m_{\pi\pi\pi}^{ m vis} < 1.5$ GeV
	$ \eta < 2.5$

< □ > < □ > < □ > < □ > < □ > < □ >

Constraints on a_{τ} anomalous magnetic moment

Interest in measuring a_{τ} at the LHC revisited recently

- Theoretical investigations outlined in:
 - L. Beresford, J. Liu, PRD 102 (2020) 113008
 - M. Dyndal, M. Schott, M. Klusek-Gawenda, A. Szczurek, PLB 809 (2020) 135682
 This paper suggested to use detects from ATLAS suggests

This paper suggested to use datasets from ATLAS experiment to improve the sensitivity on a_τ

Mateusz had a presentation in the past HonexComb meeting

- Final results from 5.02 TeV Pb+Pb UPC from ATLAS
 - ATLAS Collaboration submitted to PRL, arXiv:2204.13478
- Preliminary results from 5.02 TeV Pb+Pb UPC from CMS available at the link
 - CMS PAS HIN-21-009

イロト イポト イヨト イヨト

Comparison both measurements

- CMS: fiducial cross section measured with 16% relative precision (stat.-dominated) (2015 data)
- ATLAS: signal strength measured with 5% relative precision (stat.-dominated) (2018 data)

Constraints on a_{τ} anomalous magnetic moment

- Both experiments provide their first constraints on a_τ
- ATLAS precision is comparable to the DELPHI@LEP (PDG) results
- Statistical uncertainties are dominated in both experiments

< □ > < □ > < □ > < □ > < □ > < □ >

Summary & Outlook

Summary & Outlook

- HI UPCs are high-quality probes to QED and BSM physics
 - UPC data is used to constrain a_{τ} at LHC
 - ATLAS and CMS provide a measurement of exclusive $\tau^+\tau^-$ production in Pb+Pb collisions with above 5σ at the LHC
 - Found precision is compatible with LEP (PDG)
- Following the steps made in the combination of ATLAS+CMS data on $\gamma\gamma$ measurement expecting to combine results on $\tau^+\tau^-$ production

< □ > < □ > < □ > < □ > < □ > < □ >

Thank you for your kind attention!

э

A D N A B N A B N A B N