International Linear Collider ILD/ILC part 2

Karsten Buesser (DESY) Yasuhiro Makida (KEK)

Contents

Conceptual Design of the ILD Detector Magnet System

Courtesy F.Kircher, O. Delferriere, L. Scola (CEA) M. Lemke, A. Petrov, K. Sinram,U. Schneekloth, R. Stromhagen (DESY) B. Curé, K. Elsener (CERN)

Transportation of coil modules from factory

Onsite manufacture of cold mass

Y. Makida

Conceptual Design of the ILD Detector Magnet System

Magnetic Field Requirement for Physics

• ILD detector design asks for

- **solenoidal** magnet field of **3.5 T and 4 T in maximum** central field in a warm aperture **of 6.88 m in diameter and 7.35 m in length**.
- Anti-DID (Detector Integrated Dipole) horizontal magnetic field of 0.035 T in maximum within Z=0.3 m.
- No stringent field homogeneity is required, but an accurate field mapping will be requested before installation of the subdetectors inside the solenoid. Mainly for the TPC as main tracking detector.
- For safety reasons, constraints have been put on the fringe field should be less than 50 Gauss at 15 m from the interaction point (IP) in the radial direction.
- Iron yoke, besides returning and shielding the solenoidal magnetic field, will be instrumented to be used for the detection of muons and for measuring showers.

ILD Magnet General Design

- Many technical solutions successfully used for CMS are proposed for the design of the ILD magnet.
 - Solenoid coil, made of 3 modules, mechanically and electrically connected.
 - A multi-layer coil geometry is required to obtain the 4 T.
- Presence of anti-DID complicates coil design.

Cut illustration of ILD magnet

ILD Magnetic Field

ILD Solenoid Design

Coil Innor Padius (mm)	3615	• A multi-layer coil geometry is required to			
	3015	obtain the 4 T			
Coil Outer Radius (mm)	3970	 Similarly to CMS, a 4-layer coil was retained, with a nominal current in the 			
Coil Length (mm)	7350				
Cold Mass Weight (ton)	170	range of 20 kA.			
Turn × Layer	309 X 4	• The 7.35 m length of ILD coil enables to			
Nominal Current (kA)	22.4	Make it in 3 modules , each 2.45 m long.			
Current Density (A/mm ²)	10.6	because in case of even number, an interface			
Central Field (T)	4.0	between modules is set at the coil mid-plane			
Maximum Field (T)	4.6	maximum and delamination risk in the			
Inductance (H)	9.2	module-to-module coupling region should be			
Stored Energy (GJ)	2.3	reduced.			
S.Energy / Cold Mass (kJ/kg)	13	• Each conductor length of 1 layer, 103 turn, in 1 module is 2.6 km , that is fine for			
Support Shell Thickness (mm)	50	conductor fabrication.			
Cryostat I. R. (mm)	3440	 The coil is wound with inner winding technique, where aluminum alloy support 			
Cryostat O. R. (mm)	4400	cylinder of 50 mm thickness is used as			

an external mandrel.

ILD anti-DID (Detector Integrated Dipole) Design

beam line. Low energy electrons & positrons, background, are kept inside the beam pipe.

The anti-DID is located within **the same cryostat** as the main solenoid, and benefits from the cryogenics of the main coil. It will be fixed on the mandrel of the solenoid.

ILD Cryostat Configuration

From F. Kircher etc., " Conceptual Design of the ILD Detector Magnet", CL-DET-2012-081

ILD Superconducting Conductor

Superconducting Strand in virgin state		
Strand diameter (mm)	1.28	
Cu matrix / NbTi	1.1±0.1	
Jc (A/mm²) @ 4.2 K, 5 T	3300	
Rutherford Cable		
Number of Strand	36	
Cable Transposition Pitch(mm)	185	
Final Conductor (AL clad)		
Overall Dimensions (mm x mm)	74.3 X 22.8	
Total Length (km)	32	
Spool #, Length (km) per spool	12, 2.6	
Al/NbTi	≈75	
Critical Current (A @ 4.2 K, 5T)	67500	

- Conductor consists of a superconducting Rutherford cable, sheathed in a stabilizer and mechanically reinforces.
- Two solutions are considered for the reinforcement. ATLAS CS type or CMS

Coil Quench Protection

- In a classical way, the coil protection uses an external dump circuit. A dump circuit with 600 V terminal voltage extracts 56 % of the stored energy.
- In unlikely case that external dump process is not activated, quench propagation and temperature rise are estimated. The temperature reaches 185 K for CMS type conductor (resp. 150 K ATLAS CS type) and minimum temperature is about 65 K. ΔT< 120 K.

Transportation of coils from factory

Coil Module Transportation

	Solenoid	Support Cylinder	Anti DID	1/3 Solenoid C	Coil Package
	7000		0000	Dimension	$8500 \times 8500 \times 3608 \text{ mm}^3$
ID(mm)	7230	7940	8300	Weight	90.0 top (module 70 top)
OD(mm)	7940	8100	8360	vveigni	
l (mm)	7350	7350	6820	Package No.	3
	1000	1000	0020	1 Anti-DID coi	I Package
Density (g/cc)	2.7	2.7	2.7	Dimension	$8500 \times 4500 \times 3500 \text{ mm}^3$
Weight (ton)	168	40	14	Dimension	8500 ^ 4500 ^ 3500 mm ^s
1/4(ton)			3.7	Weight	16.0 ton (coil 3.7 ton)
1/2 (top)	FC -	0 11	1	Package No.	4
1/3 (1011)	00	0 14			

Land Transportation from a port to IP

Land Transportation is not impossible, but

- There are many traffic signs, signals, poles, lights and fences to be temporally removed.
 - 154 points (upper obstacle 60 points)
 - Trees are not counted.
 - Preparation and recovery cost may be comparable with transportation fee.
- Some bridges must be reinforced.
 - Reinforcement cost may be huge.
- Permissions and public approvals are necessary to occupy the road and removing road instruments.

Keeping stacking height less than GL4.9 m, number of obstacles is reduced to about 100. Keeping stacking width less than 6.0 m is more effective. So, smaller package size should be considered.

SiD Coil Module Transportation

	Solenoid	Support Cylinder	Anti DID
ID(mm)	5462	6224	6324
OD(mm)	6224	6324	6404
L(mm)	5586	5586	5586
½ L (mm)		2793	
Density (g/cc)		2.7	
Weight (ton)	133		
1/2 Weight(ton)		70	

1/2 Solenoid Coil + 1 anti – DID coil Package		
Dimension	$7000\times7000\times3800~mm^3$	
Weight	90.0 ton (module 70 ton)	
Package No.	2	

Keeping stacking height less than GL4.9 and width less than 6.0 m is desirable.

So, SiD modules transportation is costly and need public agreement.

Onsite manufacture of cold mass

Outline of ILD Coil manufacturing process Onsite winding and assembly

Onsite manufacture of cold mass (solenoid coil)

Onsite manufacture of cold mass (Anti-DID)

Winding mandrel

Anti-DID setting on solenoid

Solenoid docking

Workplace in AH for SC Magnet

Conclusion

- Technical design of ILD magnet is summarized.
 - solenoidal magnet field of 3.5 T and 4 T in maximum central field in a warm aperture of 6.88 m in diameter and 7.35 m length.
 - Anti-DID (Detector Integrated Dipole) horizontal magnetic field of 0.035 T in maximum in Z=0.3 m
- Conductor consists of a superconducting Rutherford cable, sheathed in a stabilizer and mechanically reinforces.
 - It has the overall dimensions of 74.3 X 22.8 mm². Length demand is 32 km, breakdowns 2.6 km x 12 spools.
 - Two solutions, CMS type, ATLAS CS type, has been considered.
- Magnet manufacture procedure has been investigated with the cooperation by magnet makers, forwarding agents and local support organizations.
 - In the CMS experience, the coil modules were manufactured in the factories and were transported to the experimental site.
 - It is not impossible for ILD coil module to be transported on surface, but its cost and getting public agreement to occupy regional traffic has been promoting its onsite winding.
 - Anyway many technical methods, direct-internal-multilayer winding

Back Up Slide

Cryostat Assembly (Learning by CMS experience)

2 cold mass modules are stacked on a swiveling Oct. 200-

Setting outer thermal shield Horizontal

Setting Outer Vacuum

e Center

hese photos are copied from CMS web s

