Fermilab **BENERGY** Office of Science

Magnets for the Mu2e experiment

Michael Lamm For the Mu2e Experiment September 12, 2022

With contributions from the Fermilab Mu2e Solenoid Team:

G. Ambrosio, K. Badgley, J. Brandt, D. Evbota, S. Feher, J. Hocker, Y. Huang, V. Kashikhin, M. Lamm, V. Lombardo, M. Lopes, D. Orris, T. Page, T. Nicol, V. Poloubotko, P. Schlabach, T. Tope

THE MU2E COLLABORATION

Over 200 scientists from 38 institutions

The Mu2e Collaboration

Argonne National Laboratory

Boston University Brookhaven National Laboratory University of California, Berkeley

University of California, Irvine California, Davis

University of California, Irvine California Institute of Technology

City University of New York

Joint Institute for Nuclear Research, Dubna Duke University

Fermi National Accelerator Laboratory

Laboratori Nazionali di Frascati • INFN Genova Helmholtz-Zentrum Dresden-Rossendorf • University of Houston • Kansas State University • Lawrence Berkeley National Laboratory • INFN Lecce and Università del Salento • Lewis University • University of Liverpool University College London • University of Louisville University of Manchester • Laboratori Nazionali di Frascati and Università Marconi Roma • University of Michigan • University of Minnesota • Institute for Nuclear Research, Moscow • Muons Inc. • Northern Illinois University • Northwestern University

Novosibirsk State University • Northwestern University Novosibirsk State University/Budker Institute of Nuclear Physics • INFN Pisa • Purdue University • University of South Alabama • Sun Yat Sen University • INFN Trieste University of Virginia • Yale University

Mu2e Experiment Goal

 Search for Charged Lepton Flavor Violation (CLFV) via the coherent conversion of

μ⁻N **→** e⁻N

 4 orders of magnitude greater sensitivity than previous experiments

• If discovered, unambiguous evidence of physics beyond the Standard Model

Mu2e Strategy

- Create muonic atoms: stop muons in orbit around an aluminum nucleus
- Look for events consistent with the signal
 - 105 MeV electron emanating from target
 - Clean experimental signature

The Mu2e Experiment: 3 solenoids provide magnetic field

Production Solenoid (PS)

- 1.5 m warm bore, 4 m long
- 4.6 T to 2.5 T axial field
- Operating current ~9kA
- 3 coils with 3-2-2 layers
- High-strength aluminum stabilized NbTi superconductor (similar to ATLAS Central Solenoid)
- 5083-O aluminum outer support shells
- 5N aluminum thermal bridges to extract radiation heat
- Thermal Siphon Cooling
- Warm bore supports 55-ton Heat and Radiation Shield

9/12/22

Unique PS feature: neutron radiation environment

cm Neutron flux > 100 keV, cm^{^-2} s^{^-1}

Parameter	Unit	Value
Peak absorbed dose	kGy/yr	240
Peak power density	μW/g	13
Total CM dynamic heat load	W	28
Peak DPA	1/yr	2.5·10 ⁻⁵

It is expected that RRR will degrade after one year of operation to the following critical values:

- Aluminum RRR 500 \rightarrow 100;
- Copper RRR $100 \rightarrow 50$;

Once the critical degradation is detected (by RRR gauges on the coil), the magnet will be thermo-cycled to room temperature that recovers the RRR:

- 100% recovery for aluminum
- 85% recovery for copper

6

Fermilab

Transport Solenoid (TS)

- 500 mm warm bore, 13 m long arch length
- 2.5 T at PS interface, 2.0 T at DS interface
- Monotonic negative gradient in straight sections
- Matching Toroidal fields for background suppression
- Unique magnetic field is formed by 52 SC solenoid coils organized into two cryostats: TSu and TSd.

9/12/22

• Each cryostat is powered by a separate 2kA power supply

Detector Solenoid (DS)

- 1.9 m warm bore, 10 m long
- Gradient Section 2T to 1 T field
- Spectrometer Section 1 T field with small axial gradient superimposed to reduce backgrounds
- Operating current ~6kA
- 11 coils in total
- Axial spacers in Gradient Section
- Spectrometer section made in 3 sections to simplify fabrication and reduce cost

9/12/22

Magnet technology similar to PS

Magnet status at a glance

- The magnet design work is complete
 - Reference and Technical Designs
- All aluminum-stabilized cables were fabricated by 2 vendors
 - QA and acceptance testing performed by vendors and Fermilab
- PS and DS magnets
 - are being built by a single vendor
 - Fermilab provides oversight and final acceptance testing
- TS magnet
 - all coil modules were fabricated by one vendor
 - coil acceptance testing performed by Fermilab
 - cold mass assembly completed at Fermilab
 - thermal shield and vacuum vessel assembly in progress at Fermilab

PS cable

Parameter	Unit	Value	Tolerance
Cable critical current at 5.0T, 4.22K	kA	≥66.2	
Cable critical current at 5.0T, 6.60K	kA	≥9.2	
NbTi filament diameter	μm	<40	
Strand diameter at 293K	mm	1.466	±0.005
Number of strands	-	30	
Strand Cu/non-Cu ratio	-	0.90	±0.05
RRR of Cu matrix	-	≥100	
RRR of Al stabilizer	-	≥500	
0.2% yield strength of Al stabilizer at 4.2K/293K	MPa	≥80/60	
Shear strength of Al-Cu bond at 293K	MPa	≥40	
Overall cable width at 293K	mm	30.1	±0.1
Overall cable minor edge thickness at 293K	mm	5.52	±0.03
Total delivered cable length	km	≥14.4	

Pictures courtesy of Furukawa Electric

TS cable	-	9.85±0.05
3.11±0.03	08888880	
	1	ALUMINUM 14X Ø0.67*0.01 5N aluminum

Conductor Parameter	Unit	Design Value
Cable critical current at 5T, 4.22K	А	5900
Number of strands		14
Strand diameter	mm	0.67
Strand copper/SC ratio		1 ± 0.05
RRR of Cu matrix		> 90
Filament size	μm	< 30
Strand twist pitch	mm	15 ± 2
Rutherford cable width	mm	4.79 ± 0.01
Rutherford cable thickness	mm	1.15 ± 0.006
Al-stabilized cable width (bare) at room temperature	mm	9.85 ± 0.05
Al-stabilized cable thickness (bare) at room temperature	mm	3.11 ± 0.03
Initial RRR of Aluminum stabilizer		> 800
Aluminum 0.2% yield strength at 300 K	MPa	> 30
Aluminum 0.2% yield strength at 4.2 K	MPa	> 40
Shear strength between Aluminum and NbTi strands	MPa	> 20

See "Production of Aluminum Stabilized Superconducting Cable for the Mu2e Transport Solenoid" IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, VOL. 28, NO. 3, APRIL 2018

Pictures courtesy of Hitachi Cable

DS cable

DETECTOR SOLENOID 1 AL-STABILIZED CABLE MAIN PARAMETERS

Quantity	As designed
Aluminum Stabilizer	99.998%
Cable width at 293 K	$20.1\pm0.1\ mm$
Cable thickness at 293 K	$5.27\pm0.03\ mm$
Cable I_c at 5 T, 4.22 K	\geq 25000 A
Copper RRR	≥ 80
Aluminum RRR after cold-work	≥ 800
Al 0.2% yield strength at 293 K	\geq 30 MPa
Al 0.2% yield strength at 4.2 K	\geq 40 MPa
Al-Cu Shear Strength at 293 K	\geq 20 MPa

DETECTOR SOLENOID 2 AL-STABILIZED CABLE MAIN PARAMETERS

Quantity	As designed
Aluminum Stabilizer	99.998%
Cable width at 293 K	$20.1\pm0.1\text{mm}$
Cable thickness at 293 K	$7.03\pm0.03\ mm$
Cable <i>I</i> _c at 5 T, 4.22 K	≥12500 A
Copper RRR	≥ 100
Aluminum RRR after cold-work	≥ 800
Al 0.2% yield strength at 293 K	≥ 30 MPa
Al 0.2% yield strength at 4.2 K	\geq 40 MPa
Al-Cu Shear Strength at 293 K	\geq 20 MPa

Pictures courtesy of Hitachi Cable

See "Development of Aluminum-Stabilized Superconducting Cables for the Mu2e Detector Solenoid" IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, VOL. 26, NO. 4, JUNE 2016

PS fabrication: cold mass assembly

Pictures courtesy of General Atomics

DS fabrication: coil production

Pictures courtesy of General Atomics

TS cold mass fabrication successfully completed

Pictures courtesy of ASG Superconductors

TS coil acceptance testing successfully completed

TS cold mass and thermal shield assembly at Fermilab

Current status of TS assembly at Fermilab

Planning for the future: Mu2e-II

Mu2e-II is a natural evolution of Mu2e that provides the nearest-term next step in a possible muon program at Fermilab. After the PIP-II linac construction, Mu2e-II will have access to 100 kW proton beam vs. 8 kW beam in Mu2e experiment. It allows an order of magnitude gain in sensitivity and discovery reach over Mu2e.

The main challenge for the magnetic system is that PS magnet will see a proportional increase of the neutron radiation load coming from the production target.

- The Mu2e PS magnet likely has to be replaced
- The magnet and the cooling system should be redesigned to cope with a factor of ten higher heat load
 - Conduction cooling no longer seems to be an option
 - Direct cooling by LHe may be the only feasible solution to extract the heat from the coils
- Cable-in-Conduit Conductor (CICC) could be a natural choice; however, it has several drawbacks:
 - High-density materials (Cu for the stabilizer and SS for the conduit). Would triple the heat dissipations and the load on the cryo-system comparing with the AI-stabilized conductors;
 - May have to use Nb₃Sn (expensive and difficult to work with) instead of NbTi to cope with the higher thermal load;
 - RRR of Cu permanently degrades under neutron irradiation, while RRR of AI completely recovers during a thermocycle;

For these reasons, a different technical solution is being considered for Mu2e-II

Mu2e-II solution: internally-cooled aluminum stabilized cable

- The Mu2e experiment is to search for Charged Lepton Flavor Violation to probe the physics beyond the Standard Model.
- The Mu2e magnet system consists of three solenoid magnets that use four types of aluminum-stabilized cables to meet the physics requirements.
- The magnet construction is well under way.
- Mu2e-II is being considered as a natural successor of Mu2e. It is a challenging upgrade that will require a dedicated cable and magnet R&D.

