COMET and J-PARC g-2/EDM

Ken-ichi Sasaki KEK Cryogenics Science Center 2022/09/12 COMET Superconducting Magnet

Slides by M. Yoshida

COMET at J-PARC

- J-PARC E21
- Bunched slow extracted proton beam at 8GeV from Main Ring
- New muon beamline is under construction at Hadron Experimental Facility

Goal: 10¹¹ µ⁻/sec

Requirements on muon beamline

- 1. Large acceptance to collect pions from production target
 - -High field on pion production target
 - Graded field to focus pions forward
- 2. Reduce pion contamination / high energy muons
 - Long solenoids from production to muon stopping target
 - Curved solenoid to select momentum / charge
- 3. Large signal acceptance. Reduce decay-in-orbit BG
 - -Graded field on muon stopping target
 - Curved solenoid to select 105MeV/c electrons

COMET Magnet (Phase2)

Pion Capture Solenoid 5T High field on Target Tungsten shield inside Muon Transport Solenoid 3T curved solenoid Correction dipole 0.03T~0.06T Stopping Target Solenoid $3T \rightarrow 1T$ graded field Spectrometer Solenoid 1T curved solenoid **Detector Solenoid** 1T curved solenoid

Staging Approach

Phase-I

- 3.2kW proton beam (8GeVx0.4μA)
- Sensitivity Br<10⁻¹⁴
- Graphite target
- Pion Capture Solenoid + 90deg curved solenoid
- Cylindrical drift chamber + trigger hodoscope

Phase-II

- 56kW proton beam (8GeVx7μA)
- Sensitivity Br<10⁻¹⁶
- Tungsten alloy target
- Pion Capture Solenoid + 180deg curved solenoid + Spectrometer Solenoid
- Straw tracker + calorimeter

Superconducting Solenoid Coils of Al-stabilized Conductor

> Support Shell of Forged Aluminum Alloy

rget

Shield

AL. T

67

Key Issues on PCS

- Radiation tolerance of magnet materials
 Organic material
 Strength
 Out gas
 Metal
 Electrical conduction
 - Thermal conduction

Nuclear Heating : >100W Peak dose rate in AI : ~1MGy Neutron fluence : >10²¹ n/m²

Coil Structure (Pion Capture Solenoid)

- Aluminum stabilized SC cable
 - for less nuclear heating (max. 35mW/kg)
- Radiation resistant insulator, resin
- Pure aluminum strips in between layers
 - $\hfill\square$ to cool down a coil inside

DESIGN PARAMETERS OF CAPTURE SOLENOID MAGNET

	Item	Value				
	Conductor	Aluminum stabilized SC cable Al/Cu/NbTi = 7.3/0.9/1				
	Cable dimensions	$15.0 \times 4.7 \text{ mm}^2$ (without insulation) $15.3 \times 5.0 \text{ mm}^2$ (with insulation)				
	Cable insulation	Polyimide film/Boron-free glass cloth/BT-Epoxy prepreg.				
	Magnet length	~6 meters				
ipe He)	Num. of coils	10				
	Operation current	2700 A				
	Max. field on conductor	$5.5 \text{ T} (\text{T}_{\text{cs}} = 6.5 \text{ K})^{\text{a}}$				
	Stored energy	47 MJ				
trip Coil inn	Coil inner diameter	1324 mm (CS0~MS2)				
a ib		500 mm (TS1a~TS1e)				
v		800 mm (TS1f)				
	Coil length	~1.6 m (CS0+CS1)				
		~1.4 m (MS1), ~0.7m(MS2),				
		~1.6 m (TS1a~TS1f overall)				
	Coil layers	9 (CS0+CS1)				
		5 (MS1), 7 (MS2)				
		1~6 (TS1a~TS1f)				
ed	Quench protection	active quench back heater				

^a T_{cs} is critical temperature at the maximum temperature.

Al stabilized SC cable

- Size: 4.7x15mm
- Offset yield point of Al@4K: >85MPa
- RRR@0T: >500
- Al/Cu/SC: 7.3/0.9/1
- 14 SC strands: 1.15mm dia.

Coil Temperature during Beam Operation

- Coils in Pion Capture Solenoid will be heat up by irradiation (max. 35mW/kg)
- Peak temperature in coils is estimated assuming irradiation by 56kW beam operation
- Temperature will rise as thermal conductivity degrades by irradiation
- Irradiation damage in aluminum can be recovered perfectly by thermal cycling to room temperature.

Simulation of Temperature Rise at Quench

Fig. 5. Predicted current, coil resistance, temperature at hot spot and coil voltage after a accidental quench is occurred at varied beam operation time. The dashed line indicates the inductive voltage.

Fig. 6. Maximum temperature at hot spot for CS0 (blue line), CS1 (red line), MS1 (green line) and MS2 (golden line) coil as a function of beam operation time.

Y. Yang et al., IEEE Trans. App. Supercond., 28(3), 4001405 (2018).

Coldmass Fabrication

Support shell of forged A5083

Impregnation with BT+Expoxy

heat curing

Wet winding with BT+Epoxy resin

Muon Transport Solenoid

Curved solenoid with correction dipole

Design Parameters of Transport Solenoid

Conductor	NbTi/Cu monolith wire Cu/NbTi = 6
Cable dimensions (Solenoids)	 φ1.5 mm (without insulation) φ1.56 mm (with insulation)
Cable dimensions (Dipole coils)	 φ1.2 mm (without insulation) φ1.3 mm (with insulation)
Cable insulation	Polyamide-imide enamel (AIW), PVF (TS2-15,16, TS3)
Magnet length	~6 meters
Curvature Radius	3 meters
Num. of solenoid coils	18
Num. of dipole coils	16 pairs
Operation current	210 A (solenoids) 175 A (dipole coils)
Field on axis	~3 T (solenoid) ~0.056 T (dipole)
Stored energy	5.6 MJ
Total inductance	254 H
Coil inner diameter	468 mm (TS2a~TS2-16) 600 mm (TS3)
Refrigeration	conduction from forced flow 2-phase LHe piping (7~10 g/s)
Quench protection	semi-active quench back heater

Magnet already delivered at J-PARC.

Detector Solenoid for phase1

 1 Tesla on the muon stopping target
 Large aperture for CDC and trigger hodoscope
 Cyogen-free magnet

 Cooled by 3 cryocoolers

Item	Value			
Conductor	NbTi/Cu monolith wire			
	Cu/NbTi = 4			
Strand dimensions	ϕ 1.2 mm (without insulation)			
	ϕ 1.3 mm (with insulation)			
Cable insulation	PVF			
Magnet length	~1 m (BS), ~2.5 m (DS)			
Operation current	210 A			
Field on axis	3~1 T (BS), ~1 T (DS)			
Stored energy	~14 MJ			
Coil inner diameter	460~620 mm (BS), 2140 mm (DS)			
Refrigeration	conduction cooling by GM			
	refrigerators			
Quench protection	active or semi-active quench back			
	heater			

Quench Protection in MTS, DS

- Semi-active quench back system is employed in MTS and DS.
- Heater coils are wound on superconducting coils
- The heater warms up each coil by making circuit from coils to heaters via diodes
- Stored energy will be dumped in the magnet

Calculated temperature of hot spot and heater of DS. ¹⁷

Summary ~ COMET

- Construction of COMET superconducting muon beamline for Phase I is underway
- Construction will be finished in the end of JFY2023.
- Magnet commissioning and beam run will start in JFY 2024.

J-PARC g-2/EDM

Ken-ichi Sasaki

Objective of J-PARC muon g-2/EDM experiment

Measure muon anomalous magnetic moment (g-2) precisely

Slide by Mibe

History of muon anomaly measurements and predictions

G. Venanozoni (Apr 2021)

Dominated by the magic gamma experiments (BNL+FNAL).

 \rightarrow Independent measurements are important.

Slide by Mibe

2019/07/24

Experimental approach ~ FNAL vs J-PARC

In uniform magnetic field, muon spin rotates ahead of momentum due to $g-2 \neq 0$

general form of spin precession vector:

$$\vec{\omega} = -\frac{e}{m} \left[a_{\mu} \vec{B} - \left(a_{\mu} - \frac{1}{\gamma^2 - 1} \right) \frac{\vec{\beta} \times \vec{E}}{c} + \frac{\eta}{2} \left(\vec{\beta} \times \vec{B} + \frac{\vec{E}}{c} \right) \right]$$

BNL E821 approach J-PARC approach

 $\gamma = 30 (P = 3 GeV/c)$

Continuation at FNAL with 0.1ppm precision (E989)

$$\vec{\omega} = -\frac{e}{m} \left[a_{\mu} \vec{B} + \frac{\eta}{2} \left(\vec{\beta} \times \vec{B} \right) \right]$$

E = 0 at any y

Proposed at J-PARC with 0.1ppm precision (E34) 14

Low emittance muon beam

 $\omega_a = \frac{e}{m} a_{\mu} B$

Muon orbit diameter <u>66.6 cm at 3 T</u>

Muon g-2/EDM Experiment at J-PARC: overview

proton graphite (3 GeV) target

μ+(4 MeV)

Prog. Theor. Exp. Phys. 2019, 053C02

μ+ (25 meV)

Cooling

muon storage magnet

Acceleration

μ+ (210 MeV)

Goals: 450 ppb (~ BNL/FNAL run 1) g-2 EDM 1.5 x 10⁻²¹ e · cm (x70 better)

Storage

Muon g-2/EDM Experiment at J-PARC: overview

proton graphite (3 GeV) target

µ+(4 MeV)

Surface

µ+ (25 meV)

Cooling

Prog. Theor. Exp. Phys. 2019, 053C02

Features:

- Low emittance muon beam (1/1000)
- No strong focusing (1/1000) & good injection eff. (x10)

Acceleration

- Compact storage ring (1/20)
- **Tracking detector with large acceptance**
- **Completely different from BNL/FNAL method**

muon storage magnet

µ+ (210 MeV)

BNL/FNAL run 1) • cm (x70 better)

SC magnet for J-PARC g-2/EDM

Item	Unit	Value
Nominal central field	Т	3.0
Nominal current	А	417.5
Stored energy	MJ	14.6
Inductance	Н	166.9
Peak field on strand	Т	5.4

- Superconducting coils : NbTi
 - Main solenoid coil
 - Square wire : 1.4 x 2.1 mm
 - Persistent current operation
 - Weak focusing coil
 - Round wire : φ 0.8 mm
 - Power supply operation
 - Shim coils
 - Round wire : φ 0.8 mm
 - Power supply operation

Iron piece shimming system

- Iron yoke
- Cooled by liquid Helium
- Cryocoolers to recondense LHe
- Separated cold box from magnet cryostat
 - Isolate vibration
- Vibration isolation/control system

Requirement for magnetic field design

Three functions

- Storage region
 - Field strength : 3 T
 - Homogeneity: ±0.1 ppm (average in azimuthal direction)
 - ∘ Size :

radius: 33.3 cm ± 1.5 cm height: ±5 cm Muon beam Injection region Weak focus region Solenoid

- Injection region
 - $\circ \quad B_r \times B_Z > 0$
 - Br has to change smoothly along the beam orbit
- Weak Focus_field

•
$$B_r = -n \frac{B_{0z}}{R} z$$
 n: 5×10⁻⁵ - 2×10⁻⁴

Important point

Spatial control of magnetic field distribution

Study of magnetic field design

Develop

- New magnetic field calculation code
 - truncated singular value decomposition method *1
- Conventional MRI magnet
 - Spherical harmonics deconvolution method

*1 M. Abe *et al.*, "Coil Block Designs with Good Homogeneity for MRI Magnets Based on SVD Eigenmode Strength," *IEEE trans. Magn.* Vol. 51, 7002713 (2015)

SC main coil design

I/8 model

Superconducting coils : NbTi

- Main solenoid coil
 - Square wire : 1.4 x 2.1 mm
 - Persistent current operation
- Weak focusing coil
 - Round wire : φ 0.8 mm
 - Power supply operation
- Shim coils
 - Round wire : φ 0.8 mm
 - Power supply operation

Study on Error Field

Requirement for magnetic field homogeneity : < 0.1 ppm</p>

it's easily disturbed by any sources at this level

- Possible error source
- Static error source
 - Error from manufacturing error
 - Coil misalignment/deformation
 - Yoke shape
 - Magnetic Materials
 - Inside magnet
 - chamber, detector, etc.
 - Outside the magnet
 - beam line magnet, car, etc...
 - Non-uniformity of yoke permeability

- Dynamic error source
 - Temperature change
 - Characteristics of Superconductor
 - Magnetization
 - Strand coupling current
 - Persistent current operation
 - Mechanical vibration
 - Cryocooler, Seismic vibration

Important : Evaluate the magnitude of error field Check feasibility of shimming

Error field study ~ manufacturing error

ex: Manufacturing error

Coil deformation

axial deformation

Assumed : $\pm 0.1 \text{ mm} / 0.1 \text{ mrad}$

Degrees of freedom : 40

Monte-carlo simulation

Worst case of deformation pattern

shimming system

Simulation results

Quench protection study

Simulation

- Coupled analysis of electrical circuit and heat conduction
 - Coil peak voltage
 - Coil peak temperature

✓ Persistent current mode -> dissipate stored energy IN the magnet

Intended plan

	2021	2022	2023	2024	2025	2026	2027 and beyond
KEK Budget							
Surface muon	*	Beam at H1 area		c Beam at H2 area	1		ning ing
Bldg. and facility		*	Final design		*	Completion	nissio a tak
Muon source	*	lonization test @S	2	★ Ionization tes	t at H2		Com Data
LINAC		*	80keV acceleratio	on@S2 ★ 4.3 MeV@	H2 ★	★ fabrication compl	210 MeV ete
Injection and storage		★ ele	Completion of ctron injection tes	it.		*	muon injection
Storage magnet				★ B-field probe ready	1	★ Install ★ Shimn	ning done
Detector	★ Quoter vane prototype ★ Mass production ready ★ Installation						
DAQ and computing		★ grid serv ★ re:	vice open 📩 ★ sr common computi source usage start	nall DAQ system ng operation test ★	Ready		
Analysis			*	Tracking software	ready Analysis software	ready	

Requesting the funding to the government

COMET

- Construction of COMET superconducting muon beamline for Phase I is underway
- Construction will be finished in the end of JFY2023.
- Magnet commissioning and beam run will start in JFY 2024.

J-PARC g-2/EDM

- Design stage
 - Basic design was finished -> Engineering design
- Physics run will start n 2027, (hopefully).