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AMS-100 A Magnetic Spectrometer – Successor of AMS-02

Image from: https://ams02.space/
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AMS-100: Overview

o Magnetic Spectrometer to be send to 
Lagrange Point 2 (1.5 Mkm from earth).

o Probing high energy cosmic rays, in 
particular anti-protons and anti-deuterons.

o Geometric acceptance of 100 m2 sr.

o Main magnet is a 6 m long, 4 m diameter 
HTS ultra-thin solenoid.

o No active cooling, only passive cooling 
using radiators.

o Electrical/thermal/mechanical challenge.

o Compensation coil needed to correct 
magnetic torque during operation.

o Comp. coil is a 1.5 m long, 8 m diameter 
HTS solenoid. 3



The Expedition to Lagrange Point 2
Vehicle and Launch:

o Target launch year: 2039.

o Operational for 10+ years.

o Total estimated mass of AMS-100: 40 Tons1

• ~4 Tons for the magnet system,

• ~16 Tons of detector equipment,

• ~20 Tons of auxiliary equipment and cabling.

o Launched with SpaceX’s Starship rocket.

AMS Pathfinder mission:

o First radiation cooled HTS magnet in space of such size.

o Test the operation at L2.

o Controls, radiation cooling etc.
41 AMS-100: The Next Generation Magnetic Spectrometer in Space – An International Science Platform for Physics and Astrophysics at

Lagrange Point 2, S. Schael et al., Nucl. Instrum. Methods Phys. Res. A: Accel. Spectrom. Detect. Assoc. Equip., vol.  944,  2019



AMS-100: Design Challenges

• Radiation transparency is important -> thin ~3 mm thick aluminium stabilized conductor. 
The coil pack needs to provide mechanical stability for the magnet system. Major 
mechanical challenge.

• Coil needs to survive stresses caused by launch, cool down and magnet powering.

• The AMS-100 magnet system will have a large stored energy of approximately 14 MJ -> 9 
kJ/kg. HTS materials are very stable and are difficult to quench. However, they also have the 
downside that HTS magnets are also difficult to protect, mainly due to the low NZPV. 

• Controlled resistance coil -> turns are shorted with a controlled resistance. High enough 
resistance to charge to coil in a timely fashion, but low enough to protect the magnet in 
case of a failure event. Major electrical and thermal challenge.

• Magnetic torque needs to be compensated. Can be achieved with a compensation coil. 
However, given the diameter of the main solenoid, difficult to fit in the rocket’s cargo bay.
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AMS-100: A Magnetic Spectrometer

Main Compensation Combined Unit
Coil radius 2.0 4.0 m
Coil length 6.0 1.5 m
Tape width 12 12 mm
Stabilizer Al-6063 Al-6063

Cable thickness 2.85 2.85 mm
Cable width 16 16 mm

Layers 1 1 -
Turns 376 94 -

Inductance 286 114 287 mH
Number of tapes 18 18 -
Total tape length 85 43 128 km
Operating current 10.0 -10.0 kA

Cable mass 1090 545 1635 kg
Stored Energy 14.3 5.7 14.4 MJ

Energy Density* 14 11 9 kJ/kg

Table of properties for the AMS-100 main solenoid and compensation coil.
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4.0 m

6.0 m

(me, for scale)
*Considering only the mass of the cable.



Thermal Analysis of AMS-100
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Thermal analysis shows 
radiator temperature of 
50 to 60 K.

D. Kohlberger, 01-2022



Magnetic Field and Stability

Design B-field of 0.65 T in the center, ~1 T on the 
conductor at the edge of the solenoid.

B-field of 0.5 T when then compensation coil is on.

Operating temperature range of 50 to 60 K:
• ΔT of 12 K @ 55 K

Large temperature margin is important:
• cooling power is very limited,
• high energy density,
• no intervention possible.

Smart spacing of the conductor / additional HTS 
tape is envisioned at the coil extremities to reduce 
the peak field. And allow possible operation at 
higher current/magnetic field.

The field homogeneity is not an operation critical 
parameter. 8

T. Siedenburg 06-2022



Dangers of Space: Micrometeorite Impact
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Magnet survives and operates after 
minor degradation -> No Insulation HTS 



Conductor and Coil Layout

Al-stabilizerStack of SC tapes

Shorting turns by (EB / laser) point welding.

- 1 mm2 weld provides a turn-to-turn resistance of about 3e-5 Ω. 

- AMS-100 -> 1250 mm2 per turn (10 % of the circumference) covered 
with point welds of 1 mm2 -> τ = 10 hours.

- Provides mechanical strength and provides thermal/electrical path.

- Shorts are within the envelope of the conductor pack. 

- To be tested and to be demonstrated.
10

Current conductor layout:

- Stack of eighteen 12 mm wide HTS tapes

- HTS stack is soldered to tin-coated aluminum 
(6000 series) conductor stabilizer.

- Conductor thickness of 2.75 mm.

- Outer surface anodized / varnished to 
provide turn-to-turn insulation. 



Structure of the Main Solenoid

Honeycomb for 
mechanical stiffness

11

Stack of HTS tapes

Local spot welding

Epoxy between layers

Al-alloy skin for mechanical strength and axial thermal conductivity 

X0 = 10.2% = Thickness of structure / Radiation length



Conductor Testing: Single- and Multi-Tape Samples

• Single tapes have been extensively characterized ✔.

• Many short samples of Al-alloy stabilized multi-tape HTS conductors are in preparation.
• Few-tape samples in good agreement with expectations. 
• Next: more tapes, bending, micro-meteorite impact testing, etc.

M. Wlochal, RWTH Aachen

4 mm

12 mm
12 mm

12 mm

Preparing a robust, radiation transparent HTS cable with minimal 
amount of solder and proper bonding is still a major challenge! 



Thermal-ElectroMagnetic Quench Model
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Quench behavior of the non-insulated AMS-100 main solenoid

• Quench behavior of the AMS-100 main solenoid is studied 
for several quench scenarios.

• Quasi 3D thermal, electrical and magnetic nodal-network 
model is built using python.

• Results from this model are analyzed in ANSYS/Abacus to 
evaluate the resulting mechanical response.

• Model studies the effect of slow thermal runaway and 
consequently a fast quench as function of a small defect.

• Not enough resolution at the moment for sudden and very 
local defects (due for e.g. micrometeorite impact).

• Other structural elements, such as end-flanges and ribs, are 
not yet included in the model.

• Simulations performed using a previous design iteration: 
428 turns, an operating current of 13.5 kA and a field of 1 T.

Turns divided in 
to line elements

Thermally and electrically connected:
Axial and azimuthal direction

Axial

Azimuthal



Thermal-ElectroMagnetic Quench Model
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Quench behavior of the non-insulated AMS-100 main solenoid

• Quench behavior of the AMS-100 main solenoid is studied 
for several quench scenarios.

• Quasi 3D thermal, electrical and magnetic nodal-network 
model is built using python.

• Results from this model are analyzed in ANSYS/Abacus to 
evaluate the resulting mechanical response.

• Model studies the effect of slow thermal runaway and 
consequently a fast quench as function of a small defect.

• Not enough resolution at the moment for sudden and very 
local defects (due for i.e. micrometeorite impact).

• Other structural elements, such as end-flanges and ribs, are 
not yet included in the model.

• Simulations performed using a previous design iteration: 
428 turns, an operating current of 13.5 kA and a field of 1 T.



Quench Behavior and Survival
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Quench behavior of the non-insulated AMS-
100 main solenoid:

• Quench propagation is driven by 
inductive effects instead of thermal NZP.

• Current is pushed to adjacent turns, 
these turns reach Ic and consequently 
quench themselves.

• Hot-spots are observed near the coil 
extremities as current (and thus energy) 
is pushed towards those.

• Mechanical ripple follows the normal 
zone.

• Thermal run-away is slow, but the quench 
is fast < 1 s. 



Quench Behavior and Survival
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Investigated slow thermal runaway due to 
defective turn(s):

• Current bypasses the defective turn via its turn-
to-turn resistance.

• ~ 4 W of heating in the axial resistance per turn.

• Slow thermal runaway in the order of hour(s).

• All energy dissipated within the magnet during 
the quench, no external extraction.

• Conventional protection methods, such as 
quench heaters, are ineffective.

• Quench at an extremity gives the highest hot-
spot temperature of ~190 K.

• Last iteration of the conductor layout is able to 
cool away heat from one defective turn.

Hot-spot temperature vs time

Heating due to several defective turns

Actual quench within 1 s

E=0



Quench Behavior and Survival
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Investigated slow thermal runaway due to 
defective turn(s):

• NZP is driven by inductive components.

• Current is pushed to adjacent turns, these turns 
reach Ic and consequently quench themselves.

• High current of > 2.5 x Iop reached for a short 
period of time.

• Local Lorentz force doubled during a quench.

• Mechanical ripple follows the front of the NZ.

• A quench starting in the center gives the lowest 
hot-spot temperature.

• A quench starting in an extremity gives the 
highest hot-spot temperature on the other 
extremity (all current/energy is pushed towards 
the other extremity).

Quench in the center of the magnet 
in azimuthal section 1.



Simulated Quench Behavior and Survival
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NZPV of ~ 4-8 m/s

Temperature

Peak hot-spot near extremities

Current

428 turn main solenoid, Iop = 13.5 kA, B = 1 T.

Simulations indicate that the main solenoid is thermally self-protected.



End-flanges, Ribs and Stringers
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End-Flanges (grey): Mechanical 
support of the magnet during 
manufacturing,  launch and 
operation. 
Circular, allows quench-back.

Ribs (yellow): Mechanical 
support of the magnet during 
operation and quench events. 
Circular, allows quench-back.

Stringers (blue): Mechanical support 
during launch.

Mechanical load on the conductor is 
exported from the thermal-electrical 
model to Abaqus.



Mechanical Quench Analyses
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• Shell model set-up in Abaqus to calculate stress 
in the HTS, Al-alloy conductor and structural 
components.

• Model includes the conductor, ribs and stringers.

• Stress in the conductor is almost tripled during a 
quench due to enormous induced current.

• Ribs locally reduce the stress in the conductor.

• Stress in the conductor due to thermal gradients not 
critical, strength of the epoxy to be validated 
experimentally. 

• Peak stress (~300 MPa) caused by radial Lorentz force.

• Support structure requires optimization.

J. Zimmermann & D. Pridöhl, RWTH Aachen

Center Quench

Extremity Quench

Hoop Stress HTS

Max 280 MPa , 11 mm displacement
Max 240 MPa, 10 mm displacement

Hoop Stress HTS

Boundary condition: outer rings fixed to circular shape, free thermal shrinkage



End-flanges, Ribs and Stringers
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End-Flanges (grey): Mechanical 
support of the magnet during 
manufacturing,  launch and 
operation. 
Circular, allows quench-back.

Ribs (yellow): Mechanical 
support of the magnet during 
operation and quench events. 
Circular, allows quench-back.

Stringers (blue): Mechanical support 
during launch.

Simpler 2D Model is set up to estimate 
induced currents and energy dissipation 
in the (structural) circular components.



AMS-100 - End-flanges and Ribs: Quench-back

22Optimization of the ribs and end-flanges is ongoing, results are preliminary.

Simpler 2D model to estimate induced 
currents and losses in other components:
- Coil (divided in to 7 sections)
- Thermal aluminum (7 sections)
- End-flanges (2x Al alloy, 2x SS)
- Ribs (25 pieces, Al alloy)

• Coil sections are quenched 0.1 s 
after each other.

• 250-350 kA induced in the Al end-
flanges.

• 50 kA induced in each of the ribs 
(1 MA total).

• 1 MA induced in the thermal 
aluminum.

Quench starting 
in an extremity

Al end-flanges

Thermal Al

Ribs

Coil



AMS-100 - End-flanges and Ribs: Quench-back
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Quench from an extremity:
Total Energy:  33.7  MJ
In conductor:  17.5  MJ (52%)
In ribs:  7.1  MJ (21%)
In flanges:  2.7  MJ (8%)
In thermal aluminum:  6.4  MJ (19%)

Quench from the center:
Total stored energy:  33.7  MJ
In conductor:  17.2  MJ (51%)
In ribs:  7.4  MJ (22%)
In flanges:  2.7  MJ (8%)
In thermal aluminum:  6.4  MJ (19 %)

• Large fraction (50 %) of the stored energy is dissipated in the ribs, flanges and thermal aluminum.

• Will result in a much lower hot-spot temperature.

• Induced current in the structural elements result in a lower mechanical load on the conductor itself.

• Slows down the quench process.

• Expected that further mechanical optimization will reduce the mass and dimensions of the ribs and 
end-flanges. 

• Expected reduction of energy dissipated in the ribs and end-flanges from 30% -> 10-20 %.

• One model that includes the main solenoid, compensation coil and all structural components needed.



Remaining Challenge: Compensation Coil

There is a non-zero background field at L2, magnetic torque -> magnet tries to align to this B-field.

• Compensation coil is needed to have altitude control.

• Concentric comp. coil with a radius of 4 m under investigation (to fit in to the cargo bay of the rocket).

• All current designs are inherently unstable and a strong support structure is essential. 

• 2D axisymmetric quench model including the compensation coil and struct. components in development.

Concentric Design

24



AMS-100 Demonstrator Coils

25

C. von Byern, RWTH Aachen

Several compact demonstrator coils are envisioned and in preparation.

• Test preparation procedures and components.

• Validate models and results (mechanical, electrical and thermal).

• Coils will be pushed to their limits.

• Starting with small, few turn demonstrator coils, later moving to larger 
coils and the coil for the pathfinder mission.

D. Uglietti, EPFL



AMS-100 Demonstrator Coils
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120 mm

36 turns, stack of eight 
4 mm wide tapes

Cu end-flanges

180 mm test former

• Compact demonstrator in preparation for validating 
the thermal-electromagnetic model.

• Testing all preparation methods.
• Heavily instrumented.
• Testing at 4 K up to 5 T and 20 – 60 K in S.F.

RWTH Aachen



Conclusions

• AMS-100 magnet system faces many design challenges due to its

➢ ultra-thin 0.5 T HTS coil,

➢ large stored energy of 14 MJ,

➢ very limited cooling via external radiators,

➢ requirement to survive high-vibration launch conditions,

➢ requirement to fit the magnet and its compensation coil(s) inside a rocket. 

• Quench model is under development that predicts the quench behavior of the main solenoid, the 
resulting hot-spot temperature and mechanical load on the conductor.

• Testing of materials and preparation procedures is ongoing. Several small demonstrator coils are in 
preparation to test different design aspects of the AMS-100 magnet.

• The magnet system is in its early design phase. Several iterations are expected to fine-tune its design.


