

Development of the Large Ultra-Thin HTS Magnet System for the AMS-100 Experiment in Space

<u>Tim Mulder</u>, Tommaso Bagni, Markus Czupalla, Alexey Dudarev, David Fehr, Daniel Louis, Christian von Byern, Waclaw Karpinski, Thomas Kirn, David Kohlberger, Matthias Mentink, Dominik Pridöhl, Tobias Schalm, Kai-Uwe Schröder, Arndt Schultz von Dratzig, Carmine Senatore, Thorsten Siedenburg, Helder Silva, Davide Uglietti, Michael Wlochal, Jannik Zimmermann and Stefan Schael

AMS-100 A Magnetic Spectrometer – Successor of AMS-02

The Alpha Magnetic Spectrometer on the International Space Station

Image from: https://ams02.space/

AMS-100: Overview

- Magnetic Spectrometer to be send to Lagrange Point 2 (1.5 Mkm from earth).
- Probing high energy cosmic rays, in particular anti-protons and anti-deuterons.
- \circ Geometric acceptance of 100 m² sr.
- \circ Main magnet is a 6 m long, 4 m diameter HTS ultra-thin solenoid.
- No active cooling, only passive cooling using radiators.
- Electrical/thermal/mechanical challenge. Ο
- Compensation coil needed to correct magnetic torque during operation.

Comp. coil is a 1.5 m long, 8 m diameter \bigcirc HTS solenoid.

The Expedition to Lagrange Point 2

Vehicle and Launch:

- Target launch year: 2039.
- $\circ~$ Operational for 10+ years.
- $\odot~$ Total estimated mass of AMS-100: 40 Tons^1 ~
 - ~4 Tons for the magnet system,
 - ~16 Tons of detector equipment,
 - ~20 Tons of auxiliary equipment and cabling.
- $\,\circ\,\,$ Launched with SpaceX's Starship rocket.

AMS Pathfinder mission:

- $\,\circ\,\,$ First radiation cooled HTS magnet in space of such size.
- $\,\circ\,$ Test the operation at L2.
- \circ Controls, radiation cooling etc.

¹ AMS-100: The Next Generation Magnetic Spectrometer in Space – An International Science Platform for Physics and Astrophysics at Lagrange Point 2, S. Schael et al., Nucl. Instrum. Methods Phys. Res. A: Accel. Spectrom. Detect. Assoc. Equip., vol. 944, 2019

AMS-100: Design Challenges

- Radiation transparency is important -> thin ~3 mm thick aluminium stabilized conductor. The coil pack needs to provide <u>mechanical stability</u> for the magnet system. <u>Major</u> <u>mechanical challenge</u>.
- Coil needs to survive stresses caused by launch, cool down and magnet powering.
- The AMS-100 magnet system will have a large stored energy of approximately 14 MJ -> 9 kJ/kg. HTS materials are very stable and are difficult to quench. However, they also have the downside that HTS magnets are also difficult to protect, mainly due to the low NZPV.
- Controlled resistance coil -> turns are shorted with a controlled resistance. High enough resistance to charge to coil in a timely fashion, but low enough to protect the magnet in case of a failure event. <u>Major electrical and thermal challenge</u>.
- Magnetic torque needs to be compensated. Can be achieved with a compensation coil. However, given the diameter of the main solenoid, difficult to fit in the rocket's cargo bay.

AMS-100: A Magnetic Spectrometer

Table of properties for the 7000 100 main solehold and compensation con.				
	<u>Main</u>	Compensation	<u>Combined</u>	Unit
Coil radius	2.0	4.0		m
Coil length	6.0	1.5		m
Tape width	12	12		mm
Stabilizer	Al-6063	Al-6063		
Cable thickness	2.85	2.85		mm
Cable width	16	16		mm
Layers	1	1		-
Turns	376	94		-
Inductance	286	114	287	mН
Number of tapes	18	18		-
Total tape length	85	43	128	km
Operating current	10.0	-10.0		kA
Cable mass	1090	545	1635	kg
Stored Energy	14.3	5.7	14.4	MJ
Energy Density*	14	11	9	kJ/kg
Considering only the mass of the cable.				6

Table of properties for the AMS-100 main solenoid and compensation coil

Thermal Analysis of AMS-100

Magnetic Field and Stability

Design **B-field of 0.65 T** in the center, ~1 T on the conductor at the edge of the solenoid.

B-field of 0.5 T when then compensation coil is on.^{2.00}

Operating temperature range of 50 to 60 K:

• ΔT of 12 K @ 55 K

Large temperature margin is important:

- cooling power is very limited,
- high energy density,
- no intervention possible.

Smart spacing of the conductor / additional HTS

tape is envisioned at the coil extremities to reduce ^{0.50} the peak field. And allow possible operation at higher current/magnetic field.

The field homogeneity is not an operation critical parameter.

Dangers of Space: Micrometeorite Impact

Conductor and Coil Layout

Current conductor layout:

- Stack of eighteen 12 mm wide HTS tapes
- HTS stack is soldered to tin-coated aluminum (6000 series) conductor stabilizer.
- Conductor thickness of 2.75 mm.
- Outer surface anodized / varnished to provide turn-to-turn insulation.

Shorts

Shorting turns by (EB / laser) point welding.

- 1 mm^2 weld provides a turn-to-turn resistance of about 3e-5 Ω .
- AMS-100 -> 1250 mm² per turn (10 % of the circumference) covered with point welds of 1 mm² -> τ = 10 hours.
- Provides mechanical strength and provides thermal/electrical path.
- Shorts are within the envelope of the conductor pack.
- To be tested and to be demonstrated.

Structure of the Main Solenoid

Al-alloy skin for mechanical strength and axial thermal conductivity

Conductor Testing: Single- and Multi-Tape Samples

- Single tapes have been extensively characterized
- Many short samples of Al-alloy stabilized multi-tape HTS conductors are in preparation.
- Few-tape samples in good agreement with expectations.
- Next: more tapes, bending, micro-meteorite impact testing, etc.

Thermal-ElectroMagnetic Quench Model

Quench behavior of the non-insulated AMS-100 main solenoid

- Quench behavior of the AMS-100 main solenoid is studied for several quench scenarios.
- Quasi 3D thermal, electrical and magnetic nodal-network model is built using python.
- Results from this model are analyzed in ANSYS/Abacus to evaluate the resulting mechanical response.
- Model studies the effect of slow thermal runaway and consequently a fast quench as function of a small defect.
- Not enough resolution at the moment for sudden and very local defects (due for e.g. micrometeorite impact).
- Other structural elements, such as end-flanges and ribs, are not yet included in the model.
- Turns divided in
 Simulations performed using a previous design iteration:
 428 turns, an operating current of 13.5 kA and a field of <u>1</u> T.

Thermal-ElectroMagnetic Quench Model

Quench behavior of the non-insulated AMS-100 main solenoid

- Quench behavior of the AMS-100 main solenoid is studied for several quench scenarios.
- Quasi 3D thermal, electrical and magnetic nodal-network model is built using python.
- Results from this model are analyzed in ANSYS/Abacus to evaluate the resulting mechanical response.
- Model studies the effect of slow thermal runaway and consequently a fast quench as function of a small defect.
- Not enough resolution at the moment for sudden and very local defects (due for i.e. micrometeorite impact).
- Other structural elements, such as end-flanges and ribs, are not yet included in the model.
- Simulations performed using a previous design iteration:
 428 turns, an operating current of 13.5 kA and a field of # T.

Quench Behavior and Survival

Quench behavior of the non-insulated AMS-100 main solenoid:

- Quench propagation is driven by inductive effects instead of thermal NZP.
- Current is pushed to adjacent turns, these turns reach I_c and consequently quench themselves.
- Hot-spots are observed near the coil extremities as current (and thus energy) is pushed towards those.
- Mechanical ripple follows the normal zone.
- Thermal run-away is slow, but the quench is fast < 1 s.

Quench Behavior and Survival

Investigated slow thermal runaway due to defective turn(s):

- Current bypasses the defective turn via its turnto-turn resistance.
- ~ 4 W of heating in the axial resistance per turn.
- Slow thermal runaway in the order of hour(s).
- All energy dissipated within the magnet during the quench, no external extraction.
- Conventional protection methods, such as quench heaters, are ineffective.
- Quench at an extremity gives the highest hotspot temperature of ~190 K.
- Last iteration of the conductor layout is able to cool away heat from one defective turn.

Quench Behavior and Survival

Investigated slow thermal runaway due to defective turn(s):

- NZP is driven by inductive components.
- Current is pushed to adjacent turns, these turns reach I_c and consequently quench themselves.
- High current of > 2.5 x I_{op} reached for a short period of time.
- Local Lorentz force doubled during a quench.
- Mechanical ripple follows the front of the NZ.
- A quench starting in the center gives the lowest hot-spot temperature.
- A quench starting in an extremity gives the highest hot-spot temperature on the other extremity (all current/energy is pushed towards the other extremity).

Current Evolution: Center Quench

Quench in the center of the magnet in azimuthal section 1.

Simulated Quench Behavior and Survival

428 turn main solenoid, $I_{op} = 13.5 \text{ kA}$, B = 1 T.

t = 0.2428 s

t = 0.2428 s

Simulations indicate that the main solenoid is thermally self-protected.

End-flanges, Ribs and Stringers

End-Flanges (grey): Mechanical support of the magnet during manufacturing, launch and operation. Circular, allows quench-back.

Ribs (yellow): Mechanical support of the magnet during operation and quench events. Circular, allows quench-back.

Stringers (blue): Mechanical support during launch.

Mechanical load on the conductor is exported from the thermal-electrical model to Abaqus.

Mechanical Quench Analyses

- Shell model set-up in Abaqus to calculate stress in the HTS, Al-alloy conductor and structural components.
- Model includes the conductor, ribs and stringers.
- Stress in the conductor is almost tripled during a quench due to enormous induced current.

- Ribs locally reduce the stress in the conductor.
- Stress in the conductor due to thermal gradients not critical, strength of the epoxy to be validated experimentally.
- Peak stress (~300 MPa) caused by radial Lorentz force.
- Support structure requires optimization.

Max 240 MPa, 10 mm displacement

J. Zimmermann & D. Pridöhl, RWTH Aachen Boundary

Boundary condition: outer rings fixed to circular shape, free thermal shrinkage

End-flanges, Ribs and Stringers

End-Flanges (grey): Mechanical support of the magnet during manufacturing, launch and operation.

Circular, allows quench-back.

Ribs (yellow): Mechanical support of the magnet during operation and quench events. Circular, allows quench-back.

Stringers (blue): Mechanical support during launch.

Simpler 2D Model is set up to estimate induced currents and energy dissipation in the (structural) circular components.

AMS-100 - End-flanges and Ribs: Quench-back

Simpler 2D model to estimate induced currents and losses in other components:

- Coil (divided in to 7 sections)
- Thermal aluminum (7 sections)
- End-flanges (2x Al alloy, 2x SS)
- Ribs (25 pieces, Al alloy)
- Coil sections are quenched 0.1 s after each other.
- 250-350 kA induced in the Al end-flanges.
- 50 kA induced in each of the ribs (1 MA total).
- 1 MA induced in the thermal aluminum.

Optimization of the ribs and end-flanges is ongoing, results are preliminary.

AMS-100 - End-flanges and Ribs: Quench-back

Quench from the center:

Total stored energy: 33.7 MJ In conductor: 17.2 MJ (51%) In ribs: 7.4 MJ (22%) In flanges: 2.7 MJ (8%) In thermal aluminum: 6.4 MJ (19%)

Quench from an extremity:

Total Energy: 33.7 MJ In conductor: 17.5 MJ (52%) In ribs: 7.1 MJ (21%) In flanges: 2.7 MJ (8%) In thermal aluminum: 6.4 MJ (19%)

- Large fraction (50 %) of the stored energy is dissipated in the ribs, flanges and thermal aluminum.
- Will result in a much lower hot-spot temperature.
- Induced current in the structural elements result in a lower mechanical load on the conductor itself.
- Slows down the quench process.
- Expected that further mechanical optimization will reduce the mass and dimensions of the ribs and end-flanges.
- Expected reduction of energy dissipated in the ribs and end-flanges from 30% -> 10-20 %.
- One model that includes the main solenoid, compensation coil and all structural components needed.

Remaining Challenge: Compensation Coil

There is a non-zero background field at L2, magnetic torque -> magnet tries to align to this B-field.

- Compensation coil is needed to have altitude control.
- Concentric comp. coil with a radius of 4 m under investigation (to fit in to the cargo bay of the rocket).
- All current designs are inherently unstable and a strong support structure is essential.
- 2D axisymmetric quench model including the compensation coil and struct. components in development.

AMS-100 Demonstrator Coils

Several compact demonstrator coils are envisioned and in preparation.

- Test preparation procedures and components.
- Validate models and results (mechanical, electrical and thermal).
- Coils will be pushed to their limits.
- Starting with small, few turn demonstrator coils, later moving to larger coils and the coil for the pathfinder mission.

AMS-100 Demonstrator Coils

- Compact demonstrator in preparation for validating the thermal-electromagnetic model.
- Testing all preparation methods.
- Heavily instrumented.
- Testing at 4 K up to 5 T and 20 60 K in S.F.

Conclusions

- AMS-100 magnet system faces many design challenges due to its
 - ultra-thin 0.5 T HTS coil,
 - large stored energy of 14 MJ,
 - very limited cooling via external radiators,
 - requirement to survive high-vibration launch conditions,
 - requirement to fit the magnet and its compensation coil(s) inside a rocket.
- Quench model is under development that predicts the quench behavior of the main solenoid, the resulting hot-spot temperature and mechanical load on the conductor.
- Testing of materials and preparation procedures is ongoing. Several small demonstrator coils are in preparation to test different design aspects of the AMS-100 magnet.
- The magnet system is in its early design phase. Several iterations are expected to fine-tune its design.

