

Development of Superconducting Magnets for Accelerators in Hitachi

- Toward Future Magnets for Detectors -

Sept. 13, 2022

Tomoyuki Semba

Hitachi, Ltd.

Superconducting Detector Magnet Workshop, 13/9/22

© Hitachi, Ltd. 2022. All rights reserved.

Contents

- **1. Company Profile**
- 2. History of Superconducting Products
- 3. From the Dawn of Development to Large-Scale Equipment
- **4. From Recent Products to the Future**
- 5. Summary

1. Company Profile

1-1 Company Profile

2. History of Superconducting Products

2-1 History of Superconducting Products

Superconducting Detector Magnet Workshop, 13/9/22

3. From the Dawn of Development to Large-Scale Equipment

Superconducting Detector Magnet Workshop, 13/9/22

3-1 CDF Solenoid

Manufacture of Solenoid

Main Parameters of CDF Solenoid

Winding scheme	Single layer	solenoid
Inner diameter	2966 mm	
Winding Length	4793 mm	
Number of turns	1164	
Current	5000 A	COIL RADIAL DIRECTION
Central Field	1.5 T	ų, 1.
Inductance	2.4 H	
Stored Energy	30 MJ	

Cooling and Excitation Tests

Superconducting Detector Magnet Workshop, 13/9/22

 First Manufactured in Japan Aluminum stabilized Superconducting Solenoid

CDF @ FNAL

• In FNAL TEVATRON used in proton-antiproton collision experiments

© Hitachi, Ltd. 2022. All rights reserved.

3-2 AMY Solenoid (TRISTAN)

Coil Winding

Multi-layer solenoid

2386 mm

1540 mm

1080

3.0 T

3.2 H

40 MJ

5000 A

Main Parameters of AMY Solenoid

Winding scheme

Inner diameter

Winding Length

Number of turns

Central Field

Stored Energy

Inductance

Current

AMY Detector

Superconducting Wire

High-purity Aluminum is used as the stabilizer, and a copper housing is used on the outside for rigidity.

Superconducting Detector Magnet Workshop, 13/9/22

AMY Detector was installed in OHO Laboratory.

3-3 QCS Magnets (TRISTAN, KEKB)

QCS Magnet for TRISTAN

Main Parameters of Quadrupole Magnets (KEKB)

	QCS-L	QCS-R
Field gradient (T/m)	21.66 (21.84)	21.73 (21.84)
Current (A)	2963	2963
Effective length (mm)	483 (486.1)	385 (387.7)
I/Ic @ 4.5K (%)	70	70
Bmax on the cable (T)	4.3	4.3
Stored energy (kJ)	87.5	69.7
Coil length (mm)	617	521
inner dia. (mm)	260	260
outer dia. (mm)	289.8	289.8
Collar outer dia. (mm)	340	340

QCS Magnet System for KEKB Interaction Region

Numbers within parentheses are measured values.

Superconducting Detector Magnet Workshop, 13/9/22

3-4 LHD (Large Helical Device) Helical Coils - Nuclear Fusion -

HITACHI Inspire the Next

LHD (Large Helical Device)

Device parameter of	LHD
Outside diameter	13.5 m
Height	9.1 m
Major radius	3.9 m
Pitch Number (I/m)	2/10
Minor radius	0.6 m
Plasma volume	30 m3
Magnetic field strength	3 T

LHD was constructed in 1998 at the National Institute for Fusion Science (NIFS) in Japan.

Factory Testing of Winding Machine

On-site Winding (450 turns x 2 coils) Superconducting Detector Magnet Workshop, 13/9/22

Cross Section of the conductor

Parameters of Helical Coils		
Rated Current	13 kA	
Cooling Method	LHe pool boiling	
Superconductor	NbTi/Cu/Al	
Magnetomotive Force	5.85 MA	
Field Strength	3Т	
Stored Energy	0.96 GJ	
Averaged Diameter	7.8 m	

3-4 LHD (Large Helical Device) Helical Coils - Nuclear Fusion -

Technologies Developed (some of them) •Dedicated EBW equipment for welding conductor Cu sheaths

13-axis NC helical winding machine
Laser measuring machine for surface dimension after winding etc.

Results:

•Winding of 36km in total was completed in 18 months

Achieved specified coil dimensional accuracy
 Stable operation since 1998 after completion of the entire machine

3-5 SRC (Superconducting Ring Cyclotron) Sector Magnets

HITACHI Inspire the Next

Number of Sectors Maximum Sector Field Maximum Stored Energy Material of Shield Size Total Weight

6 3.8T 235 MJ Pure Iron Diameter 19m, Height 8m 8300 tons

3-5 SRC (Superconducting Ring Cyclotron) Sector Magnets

HITACHI Inspire the Next

Main coil specification

Rated current Cooling scheme Superconductor

Magnetomotive force 4 MA/sector Central Magnetic Field 3.8T Stored Magnetic Energy 240 MJ/total

5000 A LHe pool boiling Al stabilized NbTi stranded cable 4 MA/sector 3.8T 240 M l/total

Ni-doped Al stabilized conductor: Sufficient mechanical strength, low electrical resistance, and low cost are achieved.

FSW is used for the conductor connection. Mechanical strength and low electrical resistance are achieved.

3-5 SRC (Superconducting Ring Cyclotron) Sector Magnets

HITACHI Inspire the Next

Trim coil specification

Rated current Cooling scheme

Superconductor

3000 A Two-phase He flow conduction cooling Al stabilized NbTi stranded cable

Double pancake winding coils are sandwiched between two Al-alloy plates with epoxy resin, pressurized and heated, and bonded together.
Cooling pipes are welded to Al-alloy plates.

4. From Recent Products to the Future

4-1 Superconducting Magnets with GM Refrigerator Cooling

HITACHI Inspire the Next

Superconducting Wiggler for 1.4GeV synchrotron radiation facility SAGA-LS

Configuration	Super/Normal Hybrid
Cooling Method	GM Ref. Conduction Cooling
Conductor	NbTi/Cu
Rated Current	172 A
Magnetic Field	4 T
Warm Gap	35 mm
Magnetic Energy	0.05MJ

Magnetic Field Measurement @ Factory

Large Bore Superconducting Solenoid for J-PARC Muon Transport Beam Line

Cooling Method	GM Ref. Conduction Cooling
Conductor	NbTi/Cu
Rated Current	180 A
lagnetic Field	0.5 T
Solenoid Length	1.5 m
Varm Bore Diameter	0.6 m
lagnetic Energy	0.6 MJ

4-2 Long Solenoid with SHe Conduction Cooling

Cooling He Flow Diagram

Completion of Superconducting Solenoid

Cooling Method Conductor Reted Current Central Magnetic Field	SHe Conduction Cooling NbTi/Cu 415 A 3.5 T 6 m
Warm Bore Diameter	0.2 M
viagnetic Energy	
Bobbin Material	Al Alloy
Quench Protection	Cold Diode and Quenchback Heater

Superconducting Solenoid for J-PARC Muon Transport Beam Line

4-3 HL-LHC Beam Separation Dipole (D1) Magnets

Coil Winding

Shell Welding completed

Preparation of Yoking

Yoked Magnet

Design Param	eters
Coil aperture	150 mm
Field integral	35 T m
Field	5.60 T
Current	12.1 kA
Operating Temp.	1.9 K
Conductor	NbTi/Cu
Stored Energy	340 kJ/m
Magnetic Length	6.26 m

4-4 Maintain and Improve Technology for the Future

HITACHI Inspire the Next

-- New Product Development --

MgB2 Solenoid for X-band Klystron

Central Field0.8 TMax. Field in the winding1.06 TStored Energy11.8 kJOperation Current57.1 AWarm BoreΦ 256 mm

- -- Maintaining technical capabilities --
- Manufacture of equipment for Nuclear fusion experiment

- Production of equipment for medical applications
- ex. SC magnet for Open MRI Accelerator equipment for PBT

5. Summary

(1) Technologies developed (partly based on tech. transfer from Institutes)

Tension winding, Dimension control, Resin impregnation, Heat treatment, Shrink fitting, Conductor EBW, NC winding, Laser measurement, Conductor soldering, FSW, Resin coating, Pressurization and Heating, Heat treatment of superconducting materials (Nb3Sn, Nb3Al, MgB2), Electrical insulation work, Collaring, Yoking, Precision machining, Precision assembly, Welding control, Regulatory compliance, Electrical test methods, Helium leak test methods, Pressure tightness test methods, etc.

X Co-extrusion of AI Stabilized conductor ----- (Our wire rod business no longer exists)

(2) Technologies required for fabrication of SC Detector Magnets Part of (1) above plus "Inner winding". Depends on each magnet specification. Assuming conductors can be procured !

(3) Things to keep in mind

- a. If the product does not continue, the technology is lost.
- b. Companies do not invest in themselves for uncertain future orders. (Unless some synergy can be expected with the direction of the business)

- (1) What companies should work on
 - Maintain manufacturing technology with ongoing efforts in other fields (ex. nuclear fusion, medical applications), even if it is not a superconducting device.
 - b. Actively adopt technologies that have the potential to be used in other fields
 - c. Continuously searching for new applications for our technologies
- (2) What we expect from this community
- a. Accumulation of knowledge and technology needed in the future When the time comes, transfer them to manufacturers
- b. Ensure sufficient budget and processes for prototyping and production To be able to respond to unforeseen events in a timely manner
- c. Technology development with an eye to expanding into other fields Development as a possibility to open up the future

Photos and Data : Courtesy of KEK, Tsukuba Univ., NIFS, Riken, SAGA-LS, CERN, QST, and others

END

Development of Superconducting Magnets for Accelerators in Hitachi

- Toward Future Magnets for Detectors -

Sept. 13, 2022

Tomoyuki Semba

Hitachi, Ltd.

