### SC Detector Magnets for Future Colliders & Physics Experiments Superconducting Technology in Toshiba

# TOSHIBA

Toshiba Energy Systems & Solutions Corporation Shohei Takami

Sep. 13, 2022

The information in this material is confidential and contains our intellectual property including know-how. It shall not be disclosed to any third party, copied, reproduced, used for unauthorized purposes nor modified without prior written consent of us. And please get them back this document after you have done with it.

Toshiba Energy Systems & Solutions Corporation Keihin Product Operations

#### Contents

- 01 The History of Superconducting Application
- 02 Detector Magnets
- **03** Key Technologies for Detector Magnets
- 04 Reference Technologies for Future Detector Magnets

# **05** Recent Applications



# The History of Superconducting Applications

3

### **01-1. The History of Superconducting Applications**

| <u>3MVA</u><br>Homopola                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <u>r Generator</u> <u>GMo</u><br><u>MRI magnet</u>                                   | SDC test solenoi<br>ryocooler<br>40T hyb                                                                        | d <u>D0 solenoi</u><br>for FNAL T<br>rid magnet                  | d <u>LHC-</u><br>evatron quad<br>Quadrupole triplet<br>for BigRIPS(STQ) | <u>MQXA Fau</u><br>rupole limit<br><u>10MVA</u><br><u>SMES</u> | <u>lt current</u><br><u>ter (NEDO)</u><br><u>Rotating gantry</u><br><u>magnet</u> |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|-------------------------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------------------------------------|
| 1972 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 73 1982 1984 1985                                                                    | 5 1988 1993 1995                                                                                                | 5 1996 1998 19                                                   | 999 2002 2003 2                                                         | 004 2005 200                                                   | 08 2014 2015 2021                                                                 |
| <u>MAGLEV n</u><br><u>Silicon Si</u><br><u>Puller</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | nagnet <u>30T hybrid</u><br><u>magnet</u><br>ngle Crystal <u>3000kVA G</u><br>magnet | Liq. He free <u>Magnet</u><br><u>Magnet</u><br><u>Senerator</u><br><u>Magnet f</u><br><u>Electromagnetic Sh</u> | elle solenoid<br>for B-factory<br>for LHD (Fusion)<br>hip Magnet | 5MVA SM<br>LHC-ATLAS Soler<br>70MW class 2-P Gen                        | ES <u>liq. l</u><br>Ioid                                       | 25T class<br>He free magnet<br>ITER<br>TF-coil                                    |
| Ba Ba Ba Control Contro Control Control Control Control | Asic Science<br>LHC<br>LHC<br>LHC<br>LHC<br>LHC<br>LCC<br>LCC<br>LCC<br>LCC<br>LCC   | F34/L<br>Kyetu<br>Kyetu<br>Kyetu<br>Kyetu                                                                       | ower/Ene                                                         | ergy                                                                    | > Indu                                                         | ustry/Medical                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | High<br>Magnetic Fie                                                                 | ld                                                                                                              |                                                                  | ITER<br>© 2022                                                          | 5i Crystal Pu                                                  | uller Ion Therapy                                                                 |





## **Detector Magnets**



### 02-1. Detector Solenoid Magnet for Accelerator

| Detector | Accelerator      | Year | Coil ID<br>(m) | Coil L<br>(m) | В0<br>(Т) | Stored E<br>(MJ) | Current<br>(kA) | Notes     |
|----------|------------------|------|----------------|---------------|-----------|------------------|-----------------|-----------|
| SDC      | SSC              | 1993 | 3.7            | 1.9           | 1.5       | 12               | 8.0             | Test only |
| BELLE    | <b>B-factory</b> | 1996 | 3.6            | 3.9           | 1.5       | 35               | 4.0             |           |
| D0       | Tevatron         | 1998 | 1.1            | 2.6           | 2.0       | 5                | 4.7             |           |
| ATLAS    | LHC              | 2002 | 2.5            | 5.3           | 2.0       | 39               | 7.6             |           |



# 02-2. Detector Magnet "BELLE "

Toshiba manufactured *BELLE* Solenoid Magnet, including Chimney and Cryostat.

**BELLE** has 3.6 meters inner diameter coil with Aluminum stabilized conductor.

And also indirect cooling system was adopted. Instead of liq. He bath cooling.



**BELLE Solenoid Magnet** 



#### Aluminum stabilized NbTi conductor

#### Main Prameters of BELLE Solenoid Magnet

| Central Field                                       | Т           | 1.5                                 |
|-----------------------------------------------------|-------------|-------------------------------------|
| Stored Energy                                       | MJ          | 37                                  |
| Coil ID                                             | m           | 3.6                                 |
| Coil Length                                         | m           | 3.9                                 |
| Current                                             | kA          | 4.2                                 |
| Conductor                                           | mm          | 3×33<br>NbTi / Cu / <mark>Al</mark> |
|                                                     |             |                                     |
| Cryostat OD                                         | m           | 4.0                                 |
| Cryostat OD<br>Cryostat Length                      | m<br>m      | 4.0<br>4.4                          |
| Cryostat OD<br>Cryostat Length<br>Cryostat material | m<br>m<br>- | 4.0<br>4.4<br>SUS304                |

### 02-3. Detector Magnet "ATLAS"

#### ATLAS solenoid coil is 5.3m length with 2.4m inner diameter,

and central field is 2.0T.

Aluminum stabilized conductor and indirect cooling system are also adopted.

The solenoid coil consists of 4 winding-blocks and 3 conductor welding joints.



Main Prameters of the ATLAS Solenoid

ATLAS Solenoid Coil



# Key Technologies for Detector Magnet

9

# 03-1. Key technologies for the Coil Fabrication

#### I. Inner Winding Method

Al stabilized superconductors are cooled by Helium pipe welded on the support cylinder. Therefore the outer surface of coil should be well contacted to the support cylinder.







#### **II. Welding Conductor Joint**

The conductor joints were made by welding for corresponding to 1turn.(7.6m for ATLAS) Its typical resistance achived <0.5mΩ/joint without Ic degradation.



### 03-2. Key technologies for Magnet Assemble

#### I. Indirect cooling system

Welding the liquid helium pipe to the support cylinder. Gas helium are re-condensed at the Control Dewar, and circulating by thermo-siphon effect.

Triangle Support

**Cold mass structure of ATLAS Solenoid** 





#### **Triangle Support Fabrication**

#### II. Triangle Alignment Support

LHe Piping

Mechanical supports which have a sliding and rotate mechanism provide to allow free thermal contraction. The solenoid was aligned within a tolerance of 1mm by using this eccentric function.



# Reference Technologies for Future Detector Magnets



# 04-1. Small Cryocooler Cooling System

#### Superconducting Dipole Magnet for SAMURAI Spectrometer for RIKEN RI Beam Factory

Small cryocoolers are installed for re-condensing the Helium, instead of large cooling systems.

|                    | Helium Vessel | 20K Shield | 80K Sheild | Power Lead |
|--------------------|---------------|------------|------------|------------|
| Type of Cryocooler | GM-JT         | GM         | GM         | GM         |
| No. of pcs.        | 2             | 4          | 4          | 2          |
| Cooling capacity   | 2.5W @4.3K    | 4.2W @12K  | 100W @80K  | 54W @40K   |



<u>H-Type Dipole Magnet for SAMURAI</u>

#### Main Prameters of the SAMURAI Dipole Magnet

| Туре          | -   | H-Type Dipole  |
|---------------|-----|----------------|
| Central Filed | Т   | 3.1            |
| Stored E      | MJ  | 27.4           |
| Coil ID       | m   | 2.4            |
| Coil Length   | m   | 0.2            |
| Current       | А   | 563            |
| Conductor     | mm  | Ф3.0 / NbTi-Cu |
| Core Weight   | ton | 570            |

# 04-2. Liquid Helium Free Magnet

#### Superconducting detector solenoid for COMET project(KEK).

- > A liq. He-free type magnet using conduction cooling system by small GM cryocoolers.
- > Quench protection system using the quench back heaters is adopted.



#### Main Prameters of the COMET Detector Magnet

| Central Filed                                                | Т  | 1.0                          |  |  |
|--------------------------------------------------------------|----|------------------------------|--|--|
| Stored E                                                     | MJ | 4.2                          |  |  |
| Coil ID                                                      | m  | 2.1                          |  |  |
| Coil Length                                                  | m  | 2.9                          |  |  |
| Current                                                      | А  | 189                          |  |  |
| Conductor                                                    | mm | Φ1.2/NbTi-Cu                 |  |  |
| Cryocooler                                                   | W  | 1.5W @4.2K ×3<br>35W @50K ×3 |  |  |
| DCCB<br>Power Source<br>Quench Back Heaters<br>Coil Windings |    |                              |  |  |
| <b>Quench protection circuit</b> 14                          |    |                              |  |  |

05

# **Recent Applications**



### 05-1. High Field Magnets

# Toshiba supplied world top class high field magnets for scientific researches.

It has been contributing to many of material science achieves.



#### 25T class Liq. He free Hybrid Magnet for Tohoku univ. (2014)

LTS+HTS conductor coil w/o Liq.He cooling.



#### 40T Hybrid Magnet (1995)

LTS+Copper conductor coil with Liq.He cooling.

### **05-2. Large Scale Coil for Fusion Reactor**

### **Toshiba manufactured TF (**Toroidal Field) **Coils for ITER (**International Thermonuclear Experimental Reactor).



D-shaped double pancake coil of ITER-TFC and its winding tools

International Thermonuclear Experimental Reactor (ITER)

# 05-3. Liq.He free Magnet for Heavy Ion therapy

Toshiba developed compact superconducting magnets mounted on rotating gantry for heavy ion radiotherapy, which rotates the irradiation port in a 360-degree circle and reduces both patient stress and treatment time.

Magnets (Blue ones)



**Rotating gantry** 

Liq. He free magnet for rotating gantry



Saddle-shaped and curved coil manufactured by 3D winding technology

### Acknowledgement

### **SPECIAL THANKS to**

- □ CERN
- **FNAL**

□ Furukawa Electric Co., LTd.

and all other companies, for co-operation to development of Detector Solenoid Technologies with Toshiba.

# TOSHIBA

© 2022 Toshiba Energy Systems & Solutions Corporation