Discussions

Superconducting Detector Magnet Workshop for Future Colliders & Physics Experiments

Program Committee:

Akira Yamamoto (Chair, KEK-CERN),

Benoit Cure (CERN), Lionel Quettier (CEA), Renuka Rajput-Ghoshal (JLab/BNL), Vadim Kashikhin (Fermilab), Ken-ichi Sasaki (KEK), and Yasuhiro Makida (KEK),

13 Sept. 2022

3:00		
	Registra 1st day a.m.: Reports from Projects	onnie Potter, Nikkie Deelen
	40/S2-A01 - Salle Anderson, CERN	08:15 - 08:45
	Welcome Address	Joachim Josef Mnich
	40/S2-A01 - Salle Anderson, CERN	08:45 - 09:00
:00	Opening Address	Matthias Mentink et al. 🥝
	40/S2-A01 - Salle Anderson, CERN	09:00 - 09:10
	Program Overview	Prof. Akira Yamamoto
	40/S2-A01 - Salle Anderson, CERN	09:10 - 09:20
	The Electron-Ion Collider (EIC)	Renuka Rajput-Ghoshal
	40/S2-A01 - Salle Anderson, CERN	09:20 - 09:50
	International Linear Collider - ILD (ILC-ILD)	Karsten Buesser et al. 0
00	40/S2-A01 - Salle Anderson, CERN	09:50 - 10:20
	Internation Linear Collider - SiD (ILC-SiD)	Tom Markiewicz et al. 0
	40/S2-A01 - Salle Anderson, CERN	10:20 - 10:50
	Coffee Break	
00	40/S2-A01 - Salle Anderson, CERN	10:50 - 11:20
	Compact Linear Collider (CLiC)	Benoit Cure 🥖
	40/S2-A01 - Salle Anderson, CERN	11:20 - 11:45
	Lepton Future Circular Collider (FCC-ee)	Dr Nikkie Deelen
00	40/S2-A01 - Salle Anderson, CERN	11:45 - 12:10
	Hadron Future Circular Collider (FCC-hh)	Matthias Mentink 🥝
	40/S2-A01 - Salle Anderson, CERN	12:10 - 12:35
	Circular Electron Positron Collider (CEPC)	Dr Feipeng NING
	40/S2-A01 - Salle Anderson, CERN	12:35 - 13:00

EIC

ILC-ILD

FCC-ee

ILC-SiD

Tube Radiation shield Fig. 4.4 Proposed FCC-hh detector base-line layout FCC-hh

CEPC

Lunch

1st day, **p.m.**: Reports from Projects

14:00	CERN	13:00 - 14:15
	A Large Ion Collider Experiment 3 (ALICE-3)	Werner Riegler
	40/S2-A01 - Salle Anderson, CERN	14:15 - 14:40
	Mu2e	Michael Lamm 🥜
45.00	40/S2-A01 - Salle Anderson, CERN	14:40 - 15:05
15:00	Muon experiments in Japan	Ken-ichi Sasaki et al.
	40/S2-A01 - Salle Anderson, CERN	15:05 - 15:30
	antiProton ANihilation at DArmstadt (PANDA)	Lars Schmitt
	40/S2-A01 - Salle Anderson, CERN	15:30 - 15:55
16:00	Coffee Break	
20.00	40/S2-A01 - Salle Anderson, CERN	15:55 - 16:15
	Baby International Axion Observatory (BabyIAXO)	Uwe Schneekloth
	40/S2-A01 - Salle Anderson, CERN	16:15 - 16:40
	MAgnetized Disc and Mirror Axion eXperiment (MADMAX)	Walid ABDEL MAKSOUD
17.00	40/S2-A01 - Salle Anderson, CERN	16:40 - 17:05
17:00	Alpha Magnetic Spectrometer 100 - (AMS-100)	Dr Tim Mulder et al.
	40/S2-A01 - Salle Anderson, CERN	17:05 - 17:30
	General Discussion	Lionel Quettier et al.
	40/S2-A01 - Salle Anderson, CERN	17:30 - 18:00

Mu2e

MadMAX

AMS100

- Colliders: <u>ILC</u>, <u>CLIC</u>, <u>FCC-ee</u>, <u>-hh</u>, -eh, Panda (?), <u>EIC</u>, MC, and others (CEPC, SPPS, ...)
- Non-Colliders; Muon Beam Experiments, Axion-Observatory (BabyIAXO), and others (....)
- Others ?

Courtesy: Y. Makida

в

Al-stabilized SC or Alternates for SiD ?

CLIC detector magnet

The superconducting solenoid – conceptual design

b

С

General specification of the magnet

Design Magnetic design Mechanical design Conductor design

Manufacturing aspects Winding issues Casing issues

Conductor R&D Copper profile shape Cold work

Quench propagation R&D Design Manufacturing & integration Test results

Physics specification	Value
"Ideal" FoM	~ 100 T²m²
Booster length 'L _b '	1.3 m
Bore diameter	1.35 m
Dipole Field	~ 9 T
Homogeneity (z=0)	± 10%
Maximum overall length	6.9 m
Maximum overall weight	200 t

Magnet specification	Value
Superconductor	NbTi
Operating temperature	1.8 K
Load Line margin	10 %
Temperature margin	1 K
Allowable VM stress	180 MPa
Hot spot	100 K
Discharge voltage	±1 kV
Maximum current	30 kA

Commissariat à l'énergie atomique et aux énergies alternatives

Conductor design

[2.1

108ר=0.88 +0.2 Cu wrapping

Values Units

kA

Т

km

mm²

mm²

mm²

tons

Н

23.5

10.4

9.6

362

29

28

12,6

34

1.8

33.3 mm

Commissariat à l'énergie atomique et aux énergies alternatives

Walid ABDEL MAKSOUD

13 septembre 2022

Another Alternates?

Nuclear Instruments and Methods in Physics Research A274 (1989) 95-112 North-Holland, Amsterdam

A 3 T SUPERCONDUCTING MAGNET FOR THE AMY DETECTOR

Y. DOI, T. HARUYAMA, H. HIRABAYASHI, S. ISHIMOTO, A. MAKI, T. MITO, T. OMORI, S. TERADA and K. TSUCHIYA

National Laboratory for High Energy Physics (KEK), Tsukuba-shi, Ibaraki-ken 305, Japan

A._Yamamoto and T. TaylorRAST, V.5 (2012) p91.(SC for Large Coil Task for Fusion)Cu-Stabilized SC with soldering

2nd day, a.m.: Reports from Industry

Furukawa Electric	Hisaki Sakamoto et al.
40/S2-A01 - Salle Anderson, CERN	08:30 - 08:50
Luvata (TO DE CONFIRMED)	
40/S2-A01 - Salle Anderson, CERN	08:50 - 09:10
The European industrial status on the superconductor manufacturing - Discussion	Dr Amalia Ballarino
40/S2-A01 - Salle Anderson, CERN	09:10 - 09:30
ICAS	Dr Luigi Muzzi
40/S2-A01 - Salle Anderson, CERN	09:30 - 09:50
Wuxi Toly Electric Works Co.,Ltd.	Yu Zhao
40/S2-A01 - Salle Anderson, CERN	09:50 - 10:10
Coffee Break	
40/S2-A01 - Salle Anderson, CERN	10:10 - 10:30
Status Report on Coextrusion Facilities in Europe for Detector Magnet Superconductors	Benoit Cure 🤞
40/S2-A01 - Salle Anderson, CERN	10:30 - 10:50
Techmeta	Peter Oving
40/S2-A01 - Salle Anderson, CERN	10:50 - 11:10
Hitachi	Tomoyuki Semba
40/S2-A01 - Salle Anderson, CERN	11:10 - 11:30
Toshiba	Shohei Takami
40/S2-A01 - Salle Anderson, CERN	11:30 - 11:50
Mitsubishi Electric	Hiroyuki Horii
40/S2-A01 - Salle Anderson, CERN	11:50 - 12:10

p.m.: Reports from Industry + a Proposal

14:00	GE Alstom	Marc Nusbaum
	40/S2-B01 - Salle Bohr, CERN	14:00 - 14:20
	Bilfinger Noell	Mr Michael Gehring
	40/S2-B01 - Salle Bohr, CERN	14:20 - 14:40
	ASG	Antonio Pellecchia
	40/S2-B01 - Salle Bohr, CERN	14:40 - 15:00
15:00	SAES RIAL	Carlo Santini
	40/S2-B01 - Salle Bohr, CERN	15:00 - 15:20
	Group photograph and Coffee Break	
	40/S2-B01 - Salle Bohr, CERN	15:20 - 15:50
	Sigma-Phi	Frederick Forest
16:00	40/S2-B01 - Salle Bohr, CERN	15:50 - 16:10
	MgB2	Riccardo Musenich
	40/S2-B01 - Salle Bohr, CERN	16:10 - 16:30
	Discussion session	Prof. Akira Yamamoto
17:00		
	40/S2-B01 - Salle Bohr, CERN	16:30 - 17:30

Lunch

12:00

09:00

10:00

11:00

11

FEC has many experiences for producing Al-stabilized NbTi conductors.
FEC had contributed many detector solenoid projects.

ツール	Project	Lab.	Completion	Dim. of NbTi Strand (mm)	No. of strands	Stranded Cable	Stabilizer	Conductor	Quantity (m)	
>	Mu2e PS	FNAL	2016	1.47	30	2.3*23.7	Ali-Ni	5.6*30	10,720	Subs
	Mu2e DS	FNAL	2015	1.47	12	2.3*7.9	Al	5.3*20.1	9,900	
	SMES R&D Coil	NIFS	2004	0.823	8	1.55*	AI	5.8	14,000	
	SRC Main Coil	RIKEN	2000	1.15	10	2.15*	Al-Ni	8*15	77,680	In h
	ATLAS Thin Solenoid for LHC	KEK	1998	1.22	12	2.3*7.4	Al-Ni	4.2*30	6,500	
	SRC Trim Model Coil	RIKEN	1997	1.25			Al-Zn	2.9*3.6	4,600	
	SRC Main Model Coil	RIKEN	1997	1.25	10	2.35*	Al-Zn	8*15	15,400	
	BESS	KEK	1996	0.77			AI	1.2*1.8	7,000	
	SDC Prototype SSC	KEK	1993	1.277	10		Al-Zn-Si	4.37*43.8	6,000	

すべて

Al-stabilized NbTi conductor production scheme FURUKAWA ELECTRIC Oxygen Free Copper High Purity Aluminum Additives (Ni, Zn, Ce...) NbTi Strength Wire Design Ic, AC loss, Cu ratio Aluminum Ingot NbTi Strand Inhouse NbTi Conductor **Aluminum Wire** Vendor Co-extrusion/Combining Schloemann's type Extruder **Conforming Machine** Al-Stabilized NbTi Condutor ???

All Rights Reserved, Copyright© FURUKAWA ELECTRIC CO., LTD. 2022

Manufacturer of Nb-Ti Wire – Bruker

Bruker EAS/OST

- Different types of round and rectangular Nb-Ti wires, bare or insulated (braided or varnish)
- Bruker production for LHC: Nb-Ti wire for MB and MQ and for other magnets (LHC Type 5 a and Type 6 wire for insertion quadrupoles), cable for ATLAS, BSCCO 2223 HTS for current leads

NbTi-based

NbTi (Niobium-Titanium)

NbTi Wire in Channel (WIC)

B < 9.5 T

Manufacturer of Nb-Ti Wire - Luvata

Luvata USA/Luvata Pori (EU)

- Enameled monolithic wires in round and rectangular
- configurations
 - Wire-in-channel or cable-in-channel integrated conductors
- Luvata Pori
 production for LHC:
 1/8 of MB+MQ Nb-Ti
 outer cables/wire

Multifilament billet assembly

NMR/MRI wire, available also as rectangular

MRI wire-in-channel (WIC) conductor with 84 filaments

Multifilament billet assembly

Braided wire inspection

Superconductor rod production

Al-stabilized superconductor

Pre-processing equipment

Extrusion machine

Parameter	Extrusion wheel diameter/mm	Rod diameter/mm	Cable thickness/mm	Cable width/mm	
Value	400	2*9.5~12	3.0~30.0	10.0~70.0 ₈	

□ The process of secondary extrusion

- The first time with high-purity aluminum: 10*33mm
- The second time with aluminum alloy: 22*56mm

Doped aluminum alloy materials

Goals: high mechanical strength, high RRR value

Manufacturer of Nb-Ti Wire - Luvata

Luvata USA/Luvata Pori (EU)

- Enameled monolithic wires in round and
- rectangular configurations
 - Wire-in-channel or cable-in-channel integrated conductors
 - Luvata Pori production for LHC: 1/8 of MB+MQ Nb-Ti outer

Multifilament billet assembly

NMR/MRI wire, available also as rectangular

MRI wire-in-channel (WIC) conductor with 84 filaments

Multifilament billet assembly

Braided wire inspection

Superconductor rod production

I PURE AL INSERT & AL ALLOY REINFORCEMENT

- Simultaneous double Electron Beam weld of 2.55km length > OK
- Soft soldering back-up solution
- Alloy co-extrusion > Temperature Critical for Superconductor > NOK

Engineering

• **Simultaneous machining** > +/- 50µm thickness tolerance

7

II EB-WELDING PRODUCTION LINE SET-UP

Outcome from the 2nd day

- A possible approach for Al-stabilized Superconductor production, for each step
 - Production of Rutherford Cable ptorudciton
 - Co-extrusion
 - Assembly with reinforced Al, by using EBW technology
- Discussion more, tomorrow

Outcomes in these two days

• We have received presentations from projects and industry

3rd day, **a.m.**: Strategic Discussions for Future

Development of advanced AI stabilized SC - Part 1	Dr Stefano Sgobba
40/S2-B01 - Salle Bohr, CERN	08:30 - 08:50
Development of advanced AI stabilized SC - Part 2	Benoit Cure 🥝
40/S2-B01 - Salle Bohr, CERN	08:50 - 09:10
Summary of the AI-stabilized SC requirements	Yasuhiro Makida
40/S2-B01 - Salle Bohr, CERN	09:10 - 09:30
Comments and advice from Industry: Furukawa	Hisaki Sakamoto
40/S2-B01 - Salle Bohr, CERN	09:30 - 09:50
Comments and advice from industry: Techmeta	Peter Oving
40/S2-B01 - Salle Bohr, CERN	09:50 - 10:10
Coffee break <a>(to be added) Comment and Discussion on a aternate: Soldering	CERN-MME
40/S2-B01 - Salle Bohr, CERN	10:10 - 10:30
Discussions on alternative SC : CICC experiences in ITER	Neil Mitchell
40/S2-B01 - Salle Bohr, CERN	10:30 - 10:50
Comments and advice from Industry	
40/S2-B01 - Salle Bohr, CERN	10:50 - 11:00
Discussions and comments on HTS	Toru Ogitsu
40/S2-B01 - Salle Bohr, CERN	11:00 - 11:15
Challenge of HTS for future accelerator magnets	Dr Amalia Ballarino
40/S2-B01 - Salle Bohr, CERN	11:15 - 11:30
General Discussions on Future Prospect and global cooperation	Prof. Akira Yamamoto et al.
40/S2-B01 - Salle Bohr, CERN	11:30 - 12:20
Closing remarks	Toru Oaitsu

Al-stabilized SC:

- No industrial production available, as current status,
- Development to be resumed
 - Urgent requests from EIC, BabyIAXO, ...
- Laboratory-Industry cooperation inevitable. For
 - Co-extrusion technology and/or
 - Soldering technology as backup

Alternate SC:

• CICC

- It may be applicable in most detector solenoid design, if no request of "transparency".
- A proposal to apply CICC to ILC-SiD, with no request for "transparency.
- It is Important to study the feasibility, and to learn experiences integrated in the ITER project.

• HTS

12:20 - 12:30

- HTS application proposed by AMS-100,
- The feasibility to be investigated.

40/S2-B01 - Salle Bohr, CERN

11:00

09:00

10:00

Session conveners

•			
	Day 1:AM	1st session: 2nd session:	Benoit Cure Ken-ichi Sasaki
	PM	1st session: 2nd session:	Renuka Rajput-Ghoshal Lionel Quettier
	Day 2: AM	1st session: 2nd session:	Yasuhiro Makida Nikkie Deelen
	РМ	1st session: 2nd session:	Vadim Kashkhin Toru Ogitsu
	Day 3: AM	1st session: 2nd session:	Matthias Mentink Akira Yamamoto

Bakup

General Agenda

Date	Agenda
Sept. 12 th	Opening remark: Reports from Laboratories: Requirements from Physics Experiments - <u>Colliders:</u> EIC, ILC, CLIC, FCC-ee. –hh, Alice-3, CEPC, SPPC, MC, and others - <u>Non-colliders</u> : BabylAXO, Panda, MadMax, Muon experiments, and others
13 th	Reports from Industry: Experiences and Future Scope - Superconductor (with Al/Cu stabilizer) - Coil winding and magnet assembly, including cryostating - Specific technology Discussions Dinner
14 th	Discussions: Laboratory and Industry cooperation to be re-established - Al-stabilized superconductor and alternate conductor (CICC, HTS and) - Next actions Summary

SUPERCONDUCTING DETECTOR MAGNET WORKSHOP

12–14 Sep 2022 CERN Europe/Zurich timezone

Overview

Timetable Contribution List

Registration

Participant List

Videoconference

CERN Hostel Booking

CERN Access

Contact

- Mikkie.deelen@cern.ch
- Connie.potter@cern.ch

The Superconducting Detector Magnets Workshop will be held at CERN in September 2022 in order to bring together the physics community, the magnet designers and the industry to exchange about the future needs and efforts to be achieved in research and development to build the next magnet generations of the Future Colliders and Beyond Collider Physics Experiments developed by collaborative Institutes. The industrial capacities and their availabilities, with the foreseen prospects and plans, will be addressed and representatives of industry working on all aspects of superconducting detector magnets will be invited. The purpose of the workshop will be to foster collaborations, the exchange of ideas, concepts, and best practices, and to advance on superconducting detector magnet technologies. A topic of particular importance to be addressed will the availability of aluminum-stabilized Nb-Ti/Cu conductors.

Co-chairs :

Matthias Mentink (CERN) and Toru Ogitsu (KEK)

Local Organizing Committee:

Nikkie Deelen and Connie Potter (CERN)

Program Committee:

Benoit Cure (CERN) and Lionel Quettier (CEA) Renuka Rajput-Ghoshal (JLab/BNL) and Vadim Kashikhin (Fermilab) Ken-ichi Sasaki (KEK), Yasuhiro Makida (KEK), and Akira Yamamoto (Chair, KEK)

Below you can register for the workshop by clicking on the registration button. This workshop will be held in hybrid format and participants are encouraged to join the workshop in person at CERN. To ease your stay at CERN, we have blocked rooms in the CERN hostel for participants of this workshop that can be reserve by filling out one of the forms below. The difference between the two forms is the check-out date, so please choose the form you need accordingly. After filling out the form you should send it to housing.service@cern.ch no later than 31 days before your arrival!

https://indico.cern.ch/event/<u>1162992</u>/

SnowMass White Paper Submission

Search...

Help | Advanced S

Physics > Instrumentation and Detectors

[Submitted on 15 Mar 2022]

Superconducting detector magnets for high energy physics

Matthias Mentink, Ken-ichi Sasaki, Benoit Cure, Nikkie Deelen, Alexey Dudarev, Mitsushi Abe, Masami lio, Yasuhiro Makida, Takahiro Okamura, Toru Ogitsu, Naoyuki Sumi, Akira Yamamoto, Makoto Yoshida, Hiromi linuma

Various superconducting detector solenoids for particle physics have been developed in the world. The key technology is the aluminum-stabilized superconducting conductor for almost all the detector magnets in particle physics experiments. With the progress of the conductor, the coil fabrication technology has progressed as well, such as the inner coil winding technique, indirect cooling, transparent vacuum vessel, quench protection scheme using pure aluminum strips and so on. The detector solenoids design study is in progress for future big projects in Japan and Europe, that is, ILC, FCC and CLIC, based on the technologies established over many years. The combination of good mechanical properties and keeping a high RRR is a key point for the development of Al-stabilized conductor. The present concern for the detector solenoid development is to have been gradually losing the key technologies and experiences, because large-scale detector magnets with Al-stabilized conductor has not been fabricated after the success of CMS and ATLAS-CS in LHC. Complementary efforts are needed to resume an equivalent level of expertise, to extend the effort on research and to develop these technologies and apply them to future detector magnet projects. Especially, further effort is necessary for the industrial technology of Alstabilized superconductor production. The worldwide collaboration with relevant institutes and industries will be critically important to re-realize and validate the required performances. Some detector solenoids for mid-scale experiment wound with conventional copper-stabilized Nb-Ti conductor require precise control of magnetic field distribution. The development efforts are on-going in terms of the magnetic field design technology with high precision simulation, coil fabrication technology and control method of magnetic field distribution.

Comments:35 pages, 35 figures, 8 tables, contribution to Snowmass 2021Subjects:Instrumentation and Detectors (physics.ins-det); Accelerator Physics (physics.acc-ph)Cite as:arXiv:2203.07799 [physics.ins-det]
(or arXiv:2203.07799v1 [physics.ins-det] for this version)

History of Detector Solenoids

SC Mag. SRF

Experiment	Laboratory	<i>R</i> (m)	<i>B</i> (T)	I (kA)	$X(X_0)$	$E/M~({\rm kJ/kg})$	E (MJ)	Year
PLUTO	DESY	0.75	2.2	1.3	4.0	2.3	4.1	1972
ISR point 1	CERN	0.85	1.5	2	1.1	1.8	3.0	1977
CELLO	Saclay/DESY	0.85	1.5	3	0.6	5.0	7.0	1978
PEP4/TPC	LBL/SLAC	1.1	1.5	2.27	0.83	7.6	11	1983
CDF	KEK/FNAL	1.5	1.6	5	0.84	5.4	30	1984
TOPAZ	KEK	1.45	1.2	3.65	0.70	4.3	19	1984
VENUS	KEK	1.75	0.75	4	0.52	2.8	11.7	1985
AMY	KEK	1.2	3	5	N/A	N/A	40	1985
CLEO-II	Cornell	1.55	1.5	3.3	2.5	3.7	25	1988
ALEPH	Saclay/CERN	2.75	1.5	5	2.0	5.5	136	1987
DELPHI	RAL/CERN	2.8	1.2	5	1.7	4.2	110	1988
ZEUS	INFN/DESY	1.5	1.8	5	0.9	5.2	10.5	1988
H1	RAL/DESY	2.8	1.2	5	1.8	4.8	120	1990
BESS	KEK	0.5	1.2	0.38	0.2	6.6	0.25	1990
WASA	KEK/Uppsala	0.25	1.3	0.9	0.18	6	0.12	1996
BABAR	INFN/SLAC	1.5	1.5	6.83	0.5	N/A	27	1997
D0	FNAL	0.6	2.0	4.85	0.9	3.7	5.6	1998
BELLE	KEK	1.8	1.5	4.16	N/A	5.3	37	1998
ATLAS-CS	KEK/CERN	1.25	2.0	7.8	0.66	7.1	38	2001
BESS-polar	KEK	0.45	1.0	0.48	0.156	9.2	0.34	2005
CMS	CMS/CERN	3.0	4.0	19.5	N/A	12	2600	2007
BESIII	IHEP (China)	1.45	1.0	5	N/A	2.6	9.5	2008
CMD-3	BINP	0.35	1.5	1	0.085	8.2	0.31	2009

COMET (KEK) --- under construction, AL-stab. SC in 2013-2015 Mu2e (Fermilab) --- under construction, Al-stab SC in same time

ATLAS-CS, placed inside Calorimeter

図 20 Ni 添加による Al-Ni 析出 ((a) 100 ppm, (b) 500 ppm). および ATLAS アルミ安定化超伝導コイル断面.

Solenoid

CMS Solenoid placed outside alorimeter

Future Energy-Frontier Colliders expected 粒子加速器の将来計画

Year of commissioning

Future Colliders based on SC Technology (See full list in next pages)

Linear Colliders:

ILC e+e- (250 GeV \rightarrow 1 TeV) :

- SRF: for High-Q (10^{10}) and high-G (31.5 MV/m)
- Highest efficiency and AC-power balance

CLIC e+e- (380 GeV \rightarrow 3 TeV) :

NRF: Very high G (100 MV/m) for energy frontier with compactness

Circular Colliders :

FCC-e+e- (90 → 350 GeV):

- SRF: with staging for efficient energy extension
 - Synchrotron radiation (SR) to determine the energy
- Highest luminosity at Z and H,

FCC-pp (2 x 50 TeV):

- High-field SC magnets (SCM: 16 T) for energy frontier
- SRF: for acceleration for good energy balance w/ SR

CEPC e+e- (2 x 120 GeV):

- SRF: for acceleration,
 - Synchrotron radiation to determine the energy

SPPC- pp (75 TeV):

- High-field SCM (12 T) for energy frontier
- SRF: beam acceleration

(EIC Ion•e-(275/100 GeV/n v.s. 18 GeV, under constr.)

SCM and SRF

MC $\mu + \mu - (3 - 14 \text{ TeV})$

- SRF and NRF with very high-field SCM
- Higher efficiency at > 3 TeV, although short life-time.

Future Colliders and Conductor Demand

Courtesy: Y. Makida

A Critical Issue: Al-stabilized Superconductor

Table 2.1 Relevant pa	rameters of high-strength	conductors
-----------------------	---------------------------	------------

Туре	Composition	mposition Yield strength (MPa)	RRR	
		A1	Full conductor	
ATLAS-CS	Ni(0.5%)A1	110	146	590
CMS	Pure A1 &	26	258	1400
	A6082-T6	428		

