

CERN – 12-14 September 2022

MGB₂ CONDUCTORS FOR FUTURE DETECTOR MAGNETS

RICCARDO MUSENICH

SUPERCONDUCTING MAGNETS FOR PARTICLE DETECTORS

Main characteristics:

- Large volume
- Moderate magnetic field (0.5 to 4 T)
- Transparency to particles is often required
- Generally, solenoidal or toroidal shape

At present, only Al stabilised NbTi conductors are used for detector magnets.

NbTi is ductile, relatively cheap and robust (J_c is not affected by mechanical stress). Al ensures high heat capacity per unit length and low resistance path for current.

However, fabrication of conductors requires cabling and co-extrusion. Co-extrusion is an expensive and delicindustrial process. Very few firms have the expertise to perform co-extrusion.

Would it make sense to use other superconductors ?

https://nationalmaglab.org/magnet-development/applied-superconductivity-center

PERCONDUCTING DETECTOR

MgB₂ is more expensive than NbTi but much cheaper respect to REBCO and BiSCCO

In situ: wires are prepared by powder-in-tube method using the precursors. MgB₂ is then obtained inside the wire by suitable heat treatment (about 700°C for a few tens of minutes)

Ex situ: wires are prepared by powder-in-tube method directly using MgB₂ powders.

MgB_2 has low reversibility field B_{irr} (if $B \ge B_{irr}$ then $J_c = 0$)

Pure MgB₂: $B_{irr} \approx 12 T$ Doping increases B_{irr}

But detector magnets must not generate high magnetic field

Generally B < 4 T

Like all technical superconductors except NbTi, MgB₂ is brittle: for a given MgB₂ composite conductor, a critical bending radius does exist (order of few cm for a 0.65 mm thick tape).

Not an issue for large magnets!

Winding of a racetrack coil with ex-situ MgB₂ tape

MGB₂ CONDUCTORS FOR FUTURE DETECTOR MAGNETS

RICCARDO MUSENICH

MgB₂ would allow operating the magnet at $T > 10 K (T_c = 39 K)$

UPERCONDUCTING DETECTOR MAGNET WORKSHOP

First proposals about MgB₂ conductors coupled with Aluminium were related to space applications due to low weight requirement

P. Spillantini, Superconducting magnets and mission strategies for protection from ionizing radiation in interplanetary manned missions and interplanetary habitats Acta Astronautica, 68 (9–10), 2011, 1430-1439

R. Battiston, W. J. Burger, V. Calvelli, V. I. Datskov, S. Farinon, and R. Musenich Superconducting Magnets for Astroparticle Shielding in Interplanetary Manned Missions IEEE Trans. on Appl. Supercond., 23 (3), 2013, 4101604

EU FP7 project to study superconducting shields to protect astronauts from space radiation

Conductor: Titanium clad MgB₂ tape + Aluminium strip

Ti/MgB₂ ratio 2.7/1.
75 μm thick insulation.
Total conductor cross section: 9.25 mm^{2.}
Average mass density : 3000 kg/m³.

R. Musenich et al., "Ti–MgB2 Conductor for Superconducting Space Magnets", IEEE Trans on Appl. Supercond26 (4), 2016

Development of SR2S conductor prototype

360 m Ti-MgB₂

Cu-Ti-MgB₂ tape

Ti-MgB₂ tape copper plated during copper Ti-MgB₂ tape plating

Problems occurred during aluminium tape soldering due to different thermal contractions.Due to tight schedule and limited funds, no further attempts were made to solder the aluminum tape.

MGB₂ CONDUCTORS FOR FUTURE DETECTOR MAGNETS

RICCARDO MUSENICH

Present status of ex-situ MgB₂ conductors

Courtesy of Tiziana Spina, ASG-Superconductors

SUPERCONDUCTORS

Courtesy of Tiziana Spina, ASG-Superconductors

Lititute Hazienale di Fisica Nuzleare

In MgB₂ magnets operating at T > 10 K stability is due to the high specific heat

Aluminium in parallel is for protection:

- Good bonding between cable and aluminium is not necessary (no co-extrusion)
- <u>High purity aluminium is not necessary</u>

In principle, it is possible to use conductors obtained by cabling MgB₂ wires and aluminium wires

Limited deformation is possible before heat treatment to obtain an almost flat cable

A remarkable example of MgB₂ wire cabling: the LHC superconducting links

A. Ballarino, Supercond. Sci. Technol. 27 (2014) 044024

Summary

MgB₂ could be an excellent candidate to replace NbTi in detector magnets

Detector magnets based on MgB₂ conductors can be operated at T > 10K

Consequences of higher operative temperature are:

- higher stability (aluminium is required for protection, not as stabiliser)
- higher thermal conductivity (better indirect cooling)
- higher refrigerator COP

R&D is necessary to develop suitable conductors.

Detector magnet design should be rethought based on MgB₂ conductor features (as an example, the quench issue of MgB₂ detector magnets could be faced via controlled insulation technique.)