

MGB₂ CONDUCTORS FOR FUTURE DETECTOR MAGNETS

RICCARDO MUSENICH



SUPERCONDUCTING MAGNETS FOR PARTICLE DETECTORS

Main characteristics:

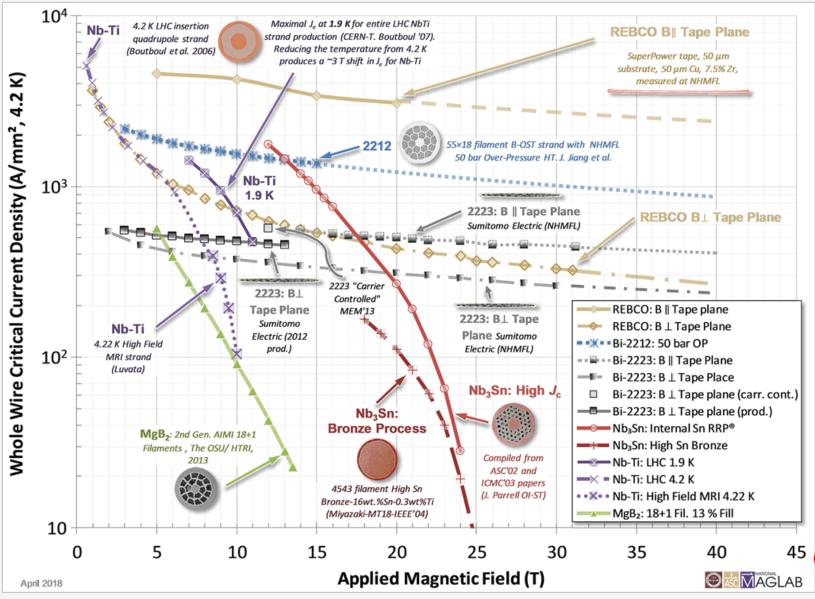
- Large volume
- Moderate magnetic field (0.5 to 4 T)
- Transparency to particles is often required
- Generally, solenoidal or toroidal shape

At present, only Al stabilised NbTi conductors are used for detector magnets.

NbTi is ductile, relatively cheap and robust (J_c is not affected by mechanical stress). All ensures high heat capacity per unit length and low resistance path for current.

However, fabrication of conductors requires cabling and co-extrusion.

Co-extrusion is an expensive and delicindustrial process.


Very few firms have the expertise to perform co-extrusion.

Would it make sense to use other superconductors?

Other technical superconductors

REBCO $T_c = 92 K$ (tape)

BiSCCO 2223 $T_c = 108 K$ (tape – Ag matrix)

BiSCCO 2212 $T_c = 96 K$ (Ag matrix)

 Nb_3Sn $T_c = 18 K$


 $MgB_2 T_c = 39 K$

MgB₂ is more expensive than NbTi but much cheaper respect to REBCO and BiSCCO

In situ: wires are prepared by powder-in-tube method using the precursors. MgB_2 is then obtained inside the wire by suitable heat treatment (about 700°C for a few tens of minutes)

Ex situ: wires are prepared by powder-in-tube method directly using MgB₂ powders.

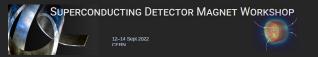
 MgB_2 has low reversibility field B_{irr} (if $B \ge B_{irr}$ then $J_c = 0$)

Pure MgB₂: $B_{irr} \approx 12 T$

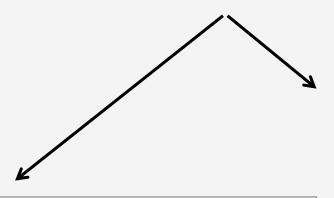
Doping increases B_{irr}

But detector magnets must not generate high magnetic field

Generally B < 4 T


Like all technical superconductors except NbTi, MgB₂ is brittle: for a given MgB₂ composite conductor, a critical bending radius does exist (order of few cm for a 0.65 mm thick tape).

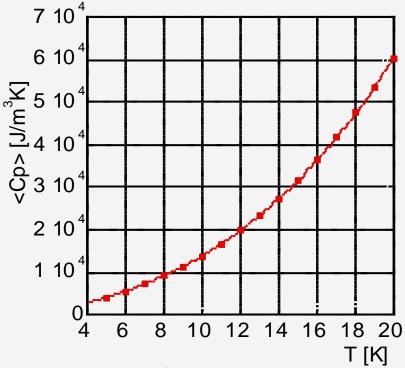
Not an issue for large magnets!



Winding of a racetrack coil with ex-situ MgB₂ tape

MgB_2 would allow operating the magnet at $T > 10~K~(T_c = 39~K)$

More efficient cryogenics


Better conduction cooling

$$\frac{K_{Al6061}@12\ K}{K_{Al6061}@4.2\ K} \approx 3$$

Higher energy density margin

$$\Delta e_{max} = \int_{T_{op}}^{T_{max}} c_{cond} dT$$

$$c_{cond} \propto \left(\frac{T}{\theta_D}\right)^3$$

Aluminium matrix is not necessary for stabilization. It can be necessary/useful for quench protection.

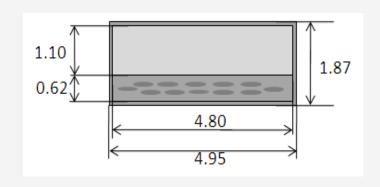
First proposals about MgB₂ conductors coupled with Aluminium were related to space applications due to low weight requirement

P. Spillantini,

Superconducting magnets and mission strategies for protection from ionizing radiation in interplanetary manned missions and interplanetary habitats Acta Astronautica, 68 (9-10), 2011, 1430-1439

R. Battiston, W. J. Burger, V. Calvelli, V. I. Datskov, S. Farinon, and R. Musenich Superconducting Magnets for Astroparticle Shielding in Interplanetary Manned Missions IEEE Trans. on Appl. Supercond., 23 (3), 2013, 4101604

EU FP7 project to study superconducting shields to protect astronauts from space radiation

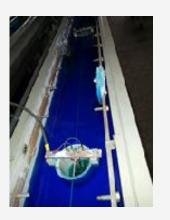

Conductor: Titanium clad MgB₂ tape + Aluminium strip

Ti/MgB₂ ratio 2.7/1.

75 µm thick insulation.

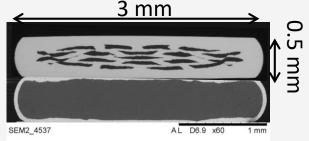
Total conductor cross section: 9.25 mm².

Average mass density: 3000 kg/m³.



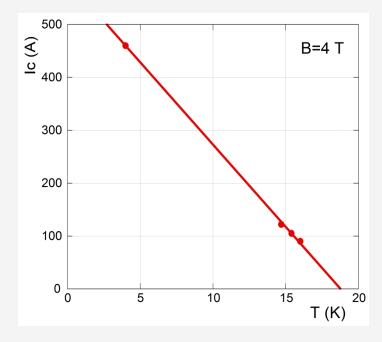
Development of SR2S conductor prototype

360 m Ti-MgB₂



Ti-MgB₂ tape during copper plating

copper plated Ti-MgB₂ tape



Cu-Ti-MgB₂ tape

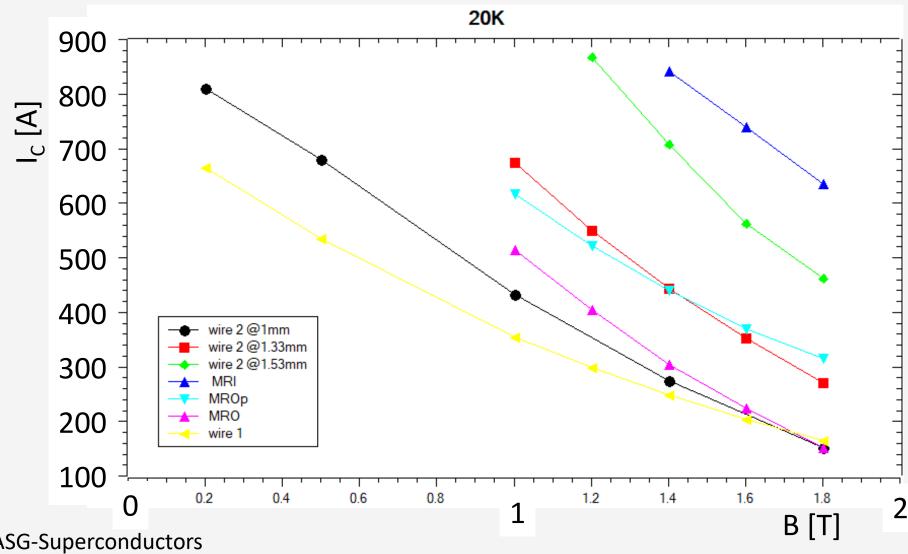
Problems occurred during aluminium tape soldering due to different thermal contractions.

Due to tight schedule and limited funds, no further attempts were made to solder the aluminum tape.

Present status of ex-situ MgB₂ conductors

Wire 1

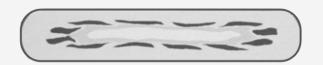
Wire 2

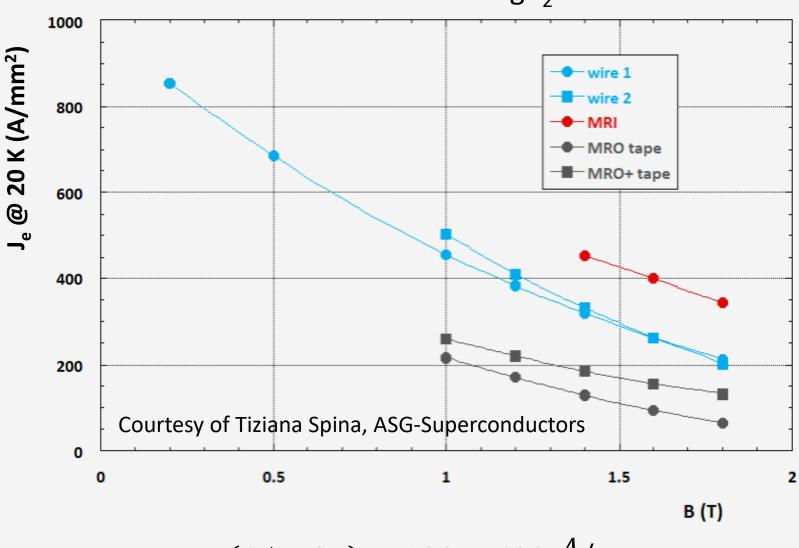


MRO/MRO+

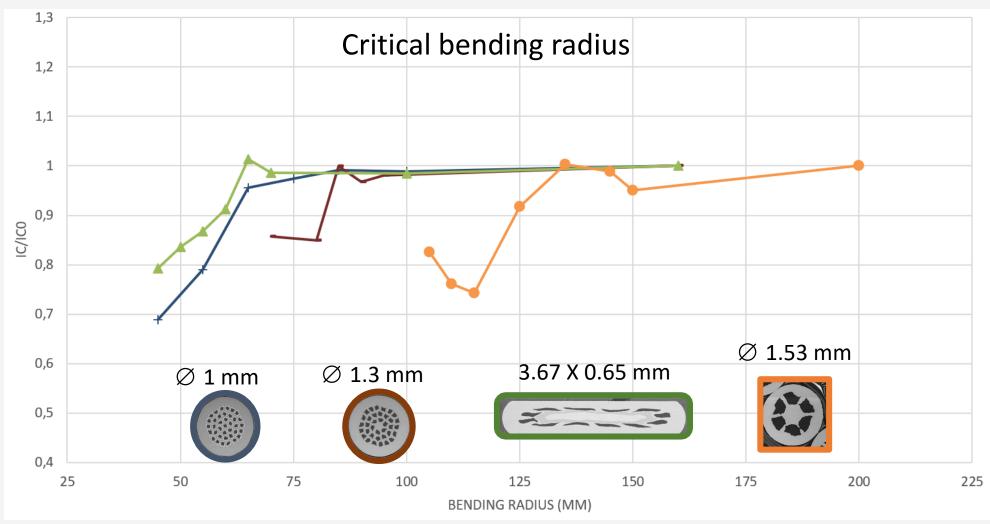
MRI (1,53 mm)

Wire 1


Wire 2

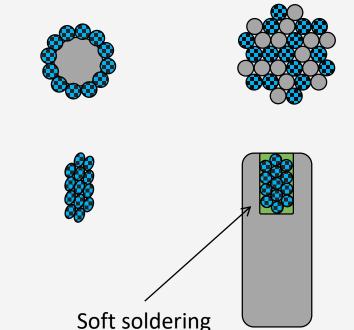

MRI

MRO/MRO+


Present status of ex-situ MgB₂ conductors

$$J_e(15K, 2T) \approx 400 - 600 \ ^A/_{mm^2}$$

In MgB $_2$ magnets operating at $T>10\ K$ stability is due to the high specific heat


Aluminium in parallel is for protection:

- Good bonding between cable and aluminium is not necessary (no co-extrusion)
- High purity aluminium is not necessary

In principle, it is possible to use conductors obtained by cabling MgB₂ wires and aluminium wires

Limited deformation is possible before heat treatment to obtain an almost flat cable

A remarkable example of MgB₂ wire cabling: the LHC superconducting links

A. Ballarino, Supercond. Sci. Technol. 27 (2014) 044024

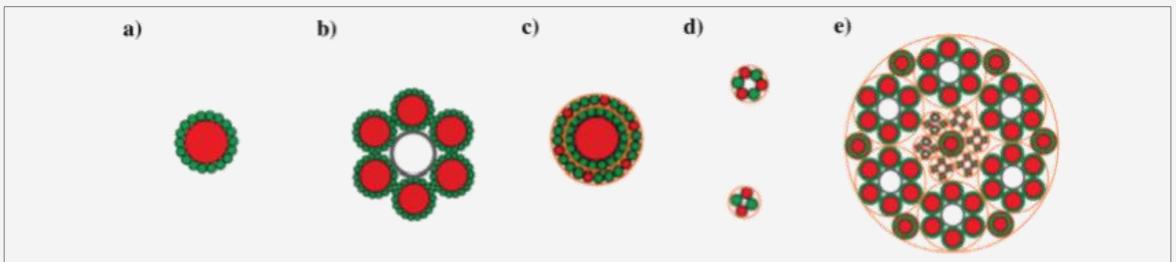


Figure 5. Cables made with MgB₂ round wire. (a) Sub-unit of 20 kA cable, $\Phi \sim 6.5$ mm; (b) 20 kA cable, $\Phi \sim 19.5$ mm; (c) concentric 2×3 kA cable, $\Phi \sim 8.5$ mm; (d) 0.4 kA cable (top) and 0.12 kA cable (bottom), $\Phi < 3$ mm; (e) 165 kA cable assembly for LHC P1 and P5 (6×20 kA, 7×2×3 kA, 4×0.4 kA, 18×0.12 kA), $\Phi \sim 65$ mm.

Summary

MgB₂ could be an excellent candidate to replace NbTi in detector magnets

Detector magnets based on MgB₂ conductors can be operated at T>10K

Consequences of higher operative temperature are:

- higher stability (aluminium is required for protection, not as stabiliser)
- higher thermal conductivity (better indirect cooling)
- higher refrigerator COP

R&D is necessary to develop suitable conductors.

Detector magnet design should be rethought based on MgB_2 conductor features (as an example, the quench issue of MgB_2 detector magnets could be faced via controlled insulation technique.)