

Sep 12 - 14, 2022 CERN

Progress in Aluminium-Stabilized HTS Cable for Future Detector Magnets

Superconducting Detector Magnet Workshop Sep. 14, 2022

Anna Vaskuri, Benoit Cure, Alexey Dudarev, and Matthias Mentink

CERN

Aluminium-stabilized HTS cable

- Advantages of HTS compared to LTS
 - Higher current densities
 - Higher magnetic fields
 - Higher operating temperatures
 (reduced cooling costs)
- Why stabilizer? Why aluminium?
 - To protect superconductor during a quench
 - Current and stored magnetic energy is redistributed to aluminium (that heats up)
 - Aluminium has low density and therefore high transparency to particle radiation

First sample that was measured in LN₂ at 77 K

Current-to-electric field measurements at 77 K

Normalized *I*_c per HTS tape

HTS tapes can be soldered to coppercoated aluminium without degradation in I_c

We are able to prepare short HTS cable samples with repeatable quality

Vaskuri *et al.*, "Aluminium-Stabilized High-Temperature Superconducting Cable for Large-Scale Detector Magnets," (in preparation).

