LHeC Linac Design Issues

Linac-Ring LHeC – two options

road map to 10³³ cm⁻²s⁻¹

 $4\pi e$

luminosity of LR collider:

(round beams)

average e⁻ current !

hg

(ultimate LHC values) $\gamma \epsilon = 3.75 \ \mu m$ $N_b = 1.7 \times 10^{11}$ bunch spacing 25 or 50 ns

beam brightness "permitted"

highest proton

smallest conceivable proton β^* function:

- reduced /* (23 m \rightarrow 10 m)
- squeeze only one p beam
- new magnet technology Nb₃Sn

b, p

р

 ${\cal E}$

β*=0.1 m

maximize geometric overlap factor

- head-on collision
- small e- emittance

*θ*_c=0 *H*_{hg}≥0.9

R&D issues

- choice of RF frequency
- bulk Nb or sputtered Nb?
- cryo load
- RF power to control microphonics
- compensation scheme for SR U_{loss}
- IR synchrotron radiation handling
- ion clearing
- fast feedback
- positron production (70x ILC)

- choice of SC linac RF frequency:
- 1.3 GHz (ILC)?
- ~720 MHz?!
- requires less cryo-power (~2 times less from BCS theory); true difference ↔ residual resistance,
 [J. Tückmantel, E. Ciapala]
- better for high-power couplers? [O. Napoly] but the couplers might not be critical
- fewer cells better for trapped modes [J. Tückmantel]
- synergy with SPL, eRHIC and ESS
- availability of solid state RF sources

linac RF parameters

	ERL 720 MHz	ERL 1.3 GHz	Pulsed
duty factor	CW	CW	0.05
RF frequency [GHz]	0.72	1.3	1.3
cavity length [m]	1	~1	~1
energy gain / cavity [MeV]	18	18	31.5
<i>R/Q</i> [100 Ω]	400-500	1200	1200
<i>Q</i> ₀ [10 ¹⁰]	2.5-5.0	2 ?	1
power loss stat. [W/cav.]	5	<0.5	<0.5
power loss RF [W/cav.]	8-32	14-31 ?	<10
power loss total [W/cav.]	13-37 (!?)	14-31	11
"W per W" (1.8 k to RT)	700	700	700
power loss / GeV @RT [MW]	0.51-1.44	0.6-1.1	0.24
length / GeV [m] (<i>filling</i> =0.57)	97	97	56

1.3 GHz dynamic cryo load

Estimate 1

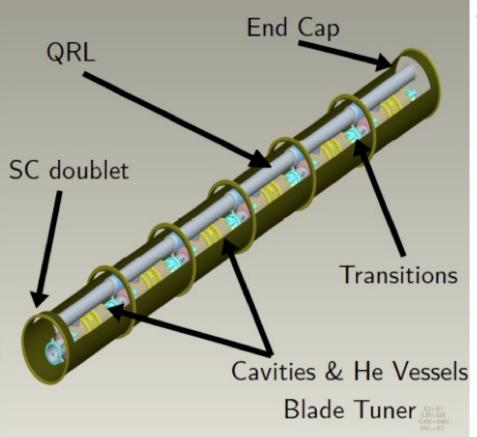
Numbers from the ILC Reference Design Report August 2007 Accelerator Accelerating gradient (table 1.1-1): 31.5 MV/m Cryomodule length (table 2.6-4): 12.652 m Pulse rate (table 1.1-1): 5.0 Hz RF pulse length (table 1.1-1): ~1.6 ms From table 3.8-2

	40-80K	5-8K	2K
Predicted module static	59.19	10.56	1.70
heat load (W/mod)			
Predicted module	94.30	4.37	9.66
dynamic heat load			
(W/mod)			
Efficiency (Watts/Watt)	16.45	197.94	702.98

0.48 W/m at 2 K at 31.5 MV/m with D=0.005 → **31.3 W/m ay 18 MV/m in cw**

Estimate 2: (18 MV/m)²/(R/Q)/Q R/Q=1200 Ω (per m) Q=2e10 \rightarrow **13.5 W/m**

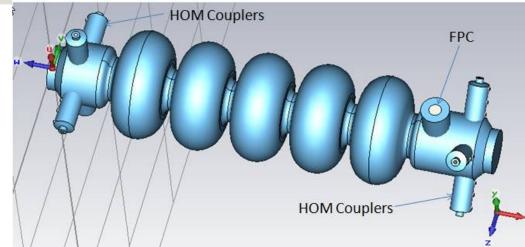
ERL electrical site power

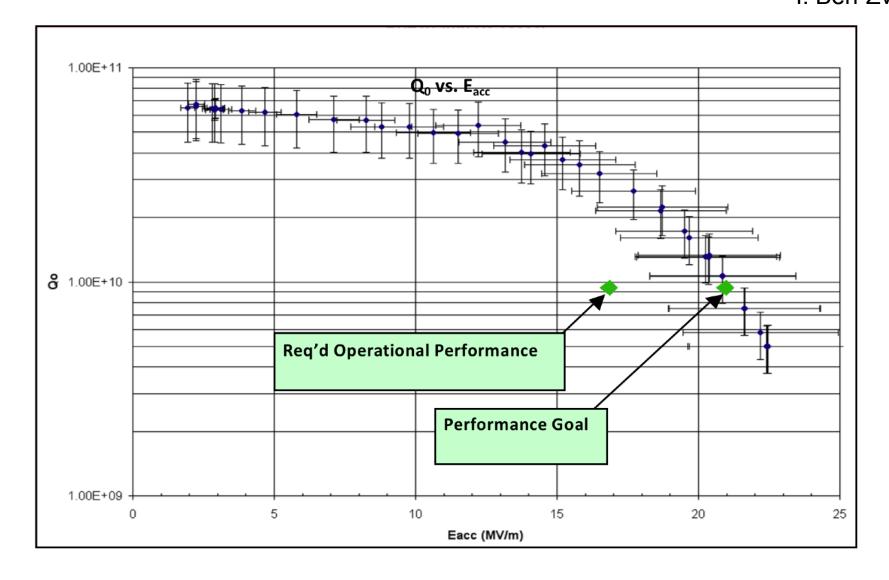

cryo power for two 10-GeV SC linacs: <u>28.9 MW</u> 18 MV/m cavity gradient, 37 W/m heat at 1.8 K 700 "W per W" cryo efficiency

RF power to control microphonics: <u>22.2 MW</u> 10 kW/m (eRHIC), 50% RF efficiency

RF for SR energy loss compensation: <u>24.1 MW</u> energy loss from SR 13.2 MW, 50% RF efficiency cryo power for compensating RF: <u>2.1 MW</u> 1.44 GeV linacs microphonics control for compensating RF: <u>1.6 MW</u> injector RF: <u>6.4 MW</u> 500 MeV, 6.4 mA, 50% RF efficiency

magnets: <u>3 MW</u>


grand total = 88.3 MW


The eRHIC-type cryo-module containing six 5-cell SRF 703 MHz cavities.

I. Ben-Zvi

Model of a new 5-cell HOM-damped SRF 703 MHz cavity.

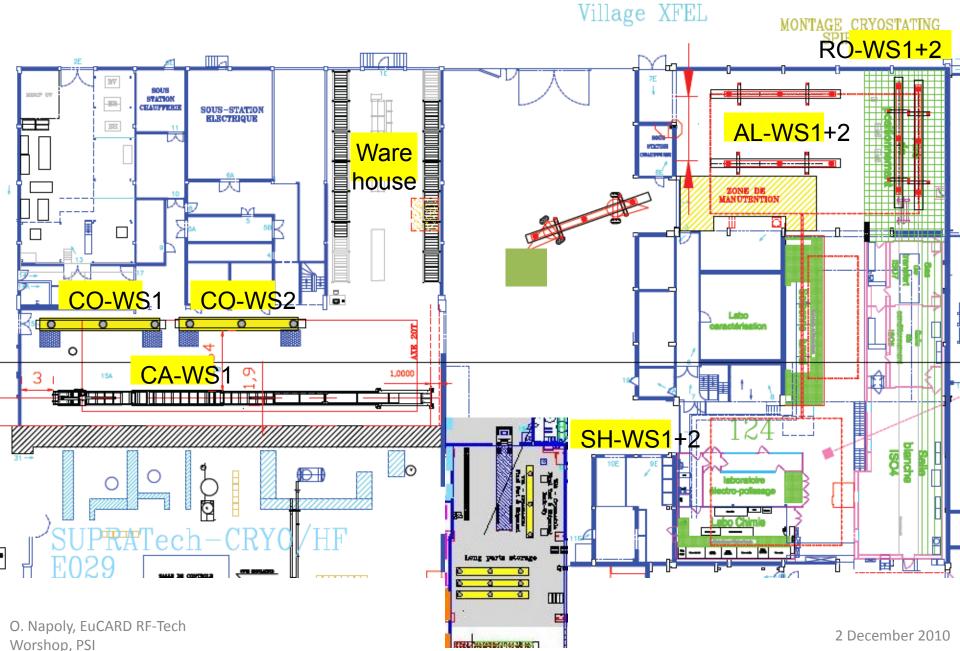
measured Q vs. field for the 5-cell 704 MHz cavity built and tested (BNL -I)

predicted cryopower based on eRHIC

I. Ben-Zvi

The relevant parameters for BNL-I cavity and for new 5-cell cavity upon which we based our calculations (BNL-III) are:

Parameter	Units	Value BNL-I	Value BNL-III
Geometry factor	Ohms	225	283
R/Q per cell	Ohms	80.8	101.3
Bpeak/Eacc	mT/MV/m	5.78	4.26


Calculation:

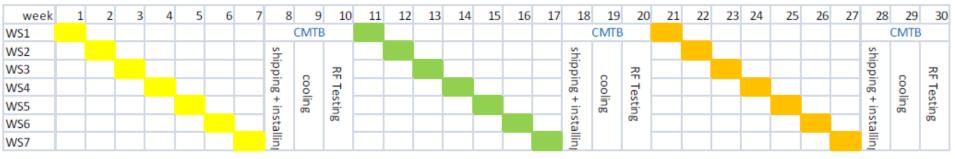
Assume Q vs. E as measured for BNL-I. Assume 18 MV/m operation. Assume losses scale with surface magnetic field. For comparison with measured results, scale field by the magnetic field ratio of BNL-III to BNL-I, giving 13.3 MV/m. The measured Q for BNL-I at this field is 4E10. Assume losses scale down by the geometry factor, that leads to a Q of 5E10. With this Q at 18 MV/m the cryogenic load is 13 W/cavity at 1.8 K (instead of 37 W/cavity!)

collaborations / joint R&D ?

SPL? – linac design (cavities, cryo module) CLIC – e- source, injector, e+ source, drive beam **CERN ILC effort HIE-ISOLDE** – sputtered cavities **JLAB BNL/eRHIC** – linac design **Saclay - cryomodule ESS** Frascati, DESY?, KEK, Cockcroft Institute,...

Saclay Assembly Hall : Workstations

Organisation of Saclay Work Stations


- 1. Clean Room Cold Coupler Area (IS04-CC-WS1)
 - Cold coupler assembly
- 2. Clean Room String Assembly Area (ISO4-SA-WS1, ISO4-SA-WS2)
- 3. Roll-out Area (RO-WS1, RO-WS2)
 - HOM adjustment, magnetic shielding, tuners,...
 - 2Ph-tube welding, cold-mass/string connection
- 4. Alignment Area (AL-WS1, AL-WS2)
 - Cavity and quadrupole fine alignment
 - Coupler shields and braids, tuner electric tests
- 5. Cantilever Area (CA-WS1)
 - Welding of 4K and 70 K shields, super insulation
 - Insertion into vacuum vessel and string alignment
- 6. Coupler Area (CO-WS1, CO-WS2)
 - Warm couplers + coupler pumping line
 - Quad current leads
- 7. Shipment Area (SH-WS1, SH-WS2)
 - Instrumentation
 - Control operations (electrical, RF), "acceptance test"
 - End-caps closing, N-insulation, loading.

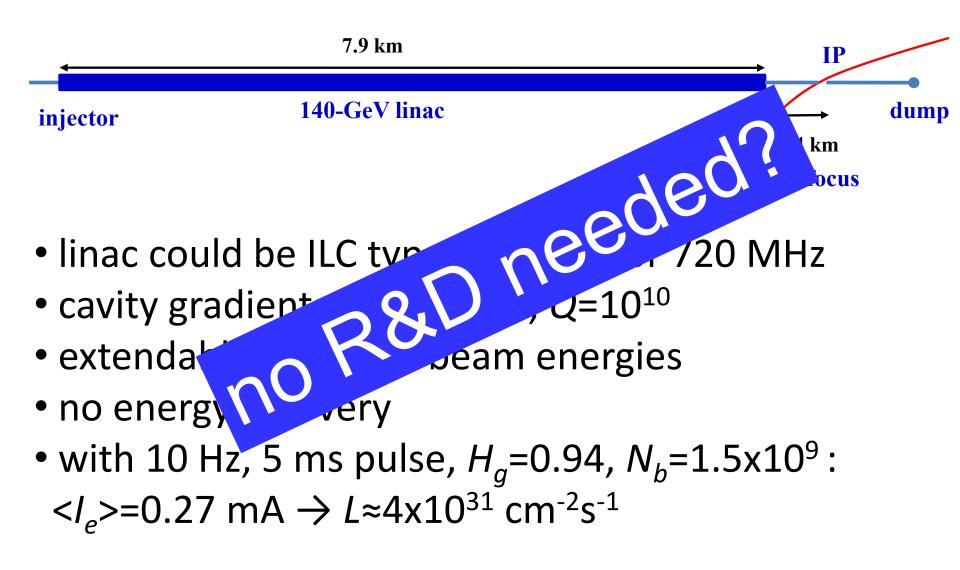
Saclay: Ramping up industrial assembly

• P1: assembly of 3 pre-series modules in sequence for training of the first ½ teams by CEA and DESY personnel, assuming 7 week assembly interleaved by 3 weeks for CMTB qualification.

• P2: assembly of 5 modules in parallel during a ramp-up period (P2) for training of the second $\frac{1}{2}$ teams by the first $\frac{1}{2}$ teams, assuming 2 week assembly per module.

• P3: assembly 75 modules in parallel at the rate of 1 module/week.

Period 1: assembly of 3 pre-series modules, in sequence, interleaved with CMTB tests

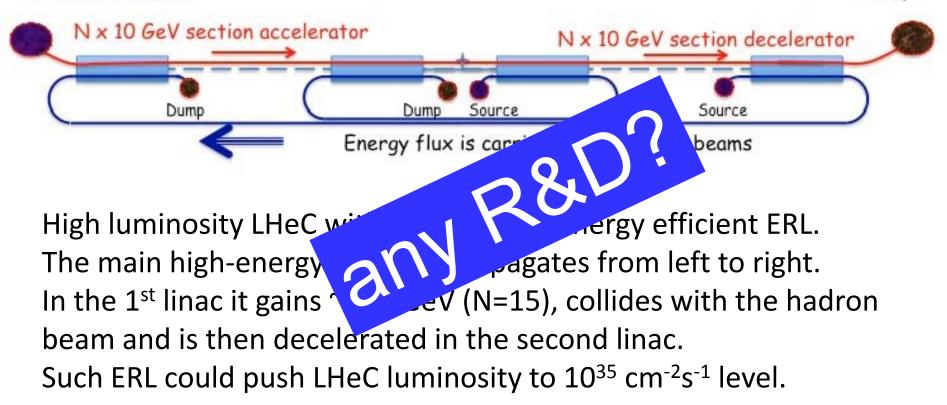


Period 2: parallel assembly of 5 modules

Period 3: // assembly of 75 modules 1/week

O. Napoly, EuCARD RF-Tech Worshop, PSI

pulsed linac for 140 GeV



highest-energy LHeC ERL option

high energy e- beam is not bent; could be converted into LC?

Polarized source

Dump

this looks a lot like CLIC 2-beam technology

V. Litvinenko, 2nd LHeC workshop Divonne 2009