Selected Topics in the Theory of Heavy Ion Collisions
 Lecture 1

Urs Achim Wiedemann
CERN Physics Department
TH Division

CERN Academic Training Programme,
14 March 2011

'Preface’

Starting point: Quantum Chromodynamics, QCD, the theory of strong interactions, is a mature theory with a precision frontier.

- background in search for new physics
- TH laboratory for non-abelian gauge theories

Open fundamental question: How do collective phenomena and macroscopic properties of matter emerge from the interactions of elementary particle physics?

Heavy Ion Physics: addresses this question in the regime of the highest temperatures and densities accessible in laboratories.

How? 1. Benchmark: establish baseline, in which collective phenomenon is absent.
2. Establish collectivity: by characterizing deviations from baseline
3. Seek dynamical explanation, ultimately in terms of QCD.

These lectures give examples of this 'How?'

I.1. The very first measurement at an Heavy Ion Collider

PHOBOS, RHIC, 2000

ALICE, PRL 105 (2010) 252301, arXiv:1011.3916

What is the benchmark for multiplicity distributions?
Multiplicity in inelastic A+A collisions is incoherent superposition of inelastic $p+p$ collisions.
(i.e. extrapolate $p+p->p+A->A+A$ without collective effects)

Glauber theory

I.2. Glauber Theory

Assumption: inelastic collisions of two nuclei (A-B) can be described by incoherent superposition of the collision of "an equivalent number of nucleon-nucleon collisions".

How many?
Establish counting based on

Spectator nucleons
Participating nucleons

To calculate $\mathrm{N}_{\text {part }}$ or $\mathrm{N}_{\text {coll }}$, take
$\sigma=$ inelastic $n-\mathrm{n}$ cross section
A priori, no reason for this choice other than that it gives a useful parameterization.
$\mathrm{N}_{\text {part }}=7$
$\mathrm{N}_{\text {coll. }}=10$
$\mathrm{N}_{\text {quarks }+ \text { gluons }}=$?

$$
\bigcirc O O \rightarrow \leftarrow \bigcirc O O \quad N_{\text {inelastic }}=1
$$

I.3. Glauber theory for $\mathrm{n}+\mathrm{A}$

We want to calculate:

$$
\begin{aligned}
& \mathrm{N}_{\text {part }}=\text { number of participants = number of 'wounded nucleons', } \\
& \text { which undergo at least one collision }
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{N}_{\text {coll }}= & \text { number of } n+n \text { collisions, } \\
& \text { taking place in an } n+A \text { or } A+B \text { collision }
\end{aligned}
$$

We know the single nucleon probability distribution within a nucleus A, the so-called nuclear density
(1.1)

$$
\begin{aligned}
& \rho(b, z) \\
& \int d z d b \rho(b, z)=1
\end{aligned}
$$

Normally, we are only interested in the transverse density, the nuclear profile function
(1.2)

$$
T_{A}(b)=\int_{-\infty}^{\infty} d z \rho(b, z)
$$

I.4. Glauber theory for $n+A$

The probability that no interaction occurs at impact parameter b:
(1.3)

$$
P_{0}(\underline{b})=\prod_{i=1}^{A}\left[1-\int d \underline{s}_{i}^{A} T_{A}\left(\underline{s}_{i}^{A}\right) \sigma\left(\underline{b}-\underline{s}_{i}^{A}\right)\right] \quad \int d \underline{s} \sigma(\underline{s})=\sigma_{n n}^{i n e l}
$$

If nucleon much smaller than nucleus

$$
\begin{equation*}
\sigma(\underline{b}-\underline{s}) \approx \sigma_{n n}^{\text {inel }} \delta(\underline{b}-\underline{s}) \tag{1.4}
\end{equation*}
$$

(1.5)

$$
P_{0}(\underline{b})=\left[1-T_{A}(\underline{b}) \sigma_{n n}^{i n e l}\right]^{A}
$$

The resulting nucleon-nucleon cross section is:

$$
\begin{equation*}
\sigma_{n A}^{i n e l}=\int d \underline{b}\left(1-P_{0}(\underline{b})\right)=\int d \underline{b}\left[1-\left[1-T_{A}(\underline{b}) \sigma_{n n}^{\text {inel }}\right]^{A}\right] \tag{1.6}
\end{equation*}
$$

$$
\xrightarrow{A \gg n} \int d \underline{b}\left[1-\exp \left[-A T_{A}(\underline{b}) \sigma_{n n}^{i n e l}\right]\right] \text { Optical limit }
$$

(1.7)

$$
=\int d \underline{b}\left[A T_{A}(\underline{b}) \sigma_{n n}^{\text {inel }}-\frac{1}{2}\left(A T_{A}(\underline{b}) \sigma_{n n}^{i n e l}\right)^{2}+\ldots\right]
$$

l.5. Glauber theory for n+A

To calculate number of collisions: probability of interacting with i-th nucleon in A is

$$
\begin{equation*}
p\left(\underline{b}, \underline{s}_{i}^{A}\right)=\int d \underline{s}_{i}^{A} T_{A}\left(\underline{s}_{i}^{A}\right) \sigma\left(\underline{b}-\underline{s}_{i}^{A}\right)=T_{A}(\underline{b}) \sigma_{n n}^{\text {inel }} \tag{1.8}
\end{equation*}
$$

Probability that projectile nucleon undergoes n collisions
$=$ prob that n nucleons collide and A-n do not
(1.9)

$$
P(\underline{b}, n)=\binom{A}{n}(1-p)^{A-n} p^{n}
$$

Transverse position \underline{s}_{i}^{A} of i-th nucleon in nucleus A

Average number of nucleon-nucleon collisions in $n+A$
(1.10) $\quad \bar{N}_{\text {coll }}^{n A}(\underline{b})=\sum_{n=0}^{A} n P(\underline{b}, n)=\sum_{n=0}^{A} n\binom{A}{n}(1-p)^{A-n} p^{n}=A p$

$$
=A T_{A}(\underline{b}) \sigma_{n n}^{i n e l}
$$

Average number of nucleon-nucleon collisions in $n+A$
(1.11) $\quad \bar{N}_{\text {part }}^{n A}(\underline{b})=1+\bar{N}_{\text {coll }}^{n A}(\underline{b})$

I.6. Glauber theory for A+B collisions

We define the nuclear overlap function
(1.12)

$$
T_{A B}(\vec{b})=\int_{-\infty}^{\infty} d \vec{s} T_{A}(\vec{s}) T_{B}(\vec{b}-\vec{s})
$$

The average number of collisions of nucleon at s^{B} with nucleons in A is
(1.13)

$$
\bar{N}_{\text {coll }}^{n A}\left(\underline{b}-\underline{s}^{B}\right)=A T_{A}\left(\underline{b}-\underline{s}^{B}\right) \sigma_{n n}^{\text {inel }}
$$

The number of nucleon-nucleon collisions in an A-B collision at impact parameter b is

(1.14)

$$
\begin{aligned}
& \bar{N}_{\text {coll }(\underline{b})}^{A B}=B \int d \underline{s}^{B} T_{B}\left(\underline{s}^{B}\right) \bar{N}_{\text {coll }}^{n A}\left(\underline{b}-\underline{s}^{B}\right) \\
&=A B \int d \underline{s} T_{B}(\underline{s}) T_{B}(\underline{b}-\underline{s}) \sigma_{n n}^{\text {inel }} \\
&=A B T_{A B}(\underline{b}) \sigma_{n n}^{\text {inel }} \quad \\
& \quad \begin{array}{l}
\text { determined in terms of } \\
\text { nuclear overlap only }
\end{array}
\end{aligned}
$$

I.7. Glauber theory for A+B collisions

Probability that nucleon at s^{B} in B is wounded by A in configuration $\left\{s_{i}^{A}\right\}$
(1.15)

$$
p\left(\underline{s}^{B},\left\{\underline{s}_{i}^{A}\right\}\right)=1-\prod_{i=1}^{A}\left[1-\sigma\left(\underline{s}^{B}-\underline{s}_{i}^{A}\right)\right]
$$

Probability of finding w_{B} wounded
 nucleons in nucleus B :
(1.16)

$$
\begin{aligned}
P\left(w_{b}, \underline{b}\right)=\binom{B}{w_{B}} & \left(\prod_{i=1}^{A} \prod_{j=1}^{B} \int d \underline{s}_{i}^{A} d \underline{s}_{j}^{B} T_{A}\left(\underline{s}_{i}^{A}\right) T_{B}\left(\underline{s}_{j}^{B}-\underline{b}\right)\right) p\left(\underline{s}_{1}^{B},\left\{\underline{s}_{i}^{A}\right\}\right) \ldots \\
& \ldots p\left(\underline{s}_{w_{B}}^{B},\left\{\underline{s}_{i}^{A}\right\}\right)\left[1-p\left(\underline{s}_{w_{B}+1}^{B},\left\{\underline{s}_{i}^{A}\right\}\right)\right] \ldots\left[1-p\left(\underline{s}_{B}^{B},\left\{\underline{s}_{i}^{A}\right\}\right)\right]
\end{aligned}
$$

Nuclear overlap function defines inelastic $\mathrm{A}+\mathrm{B}$ cross section.
(1.17) $\sigma_{A B}^{\text {inel }}=\int d \underline{b} \sigma_{A B}(\underline{b})=\int d \underline{b} P\left(w_{B}=0, \underline{b}\right)$

$$
\begin{aligned}
& \left.=\int d \underline{b}\left[1-\left(\prod_{i=1}^{A} \prod_{j=1}^{B} \int d \underline{s}_{i}^{A} d \underline{s}_{j}^{B} T_{A}\left(\underline{s}_{i}^{A}\right) T_{B}\left(\underline{s}_{j}^{B}-\underline{b}\right)\right) \prod_{j=1}^{B}\left[1-p\left(\underline{s}_{j}^{B}, \underline{s_{i}^{A}}\right\}\right)\right]\right] \\
& \approx \int d \underline{b}\left[1-\left[1-T_{A B}(b) \sigma_{N N}^{i n e l}\right]^{A B}\right]
\end{aligned}
$$

I.8. Glauber theory for $A+B$ collisions

It can be shown
Problem 1: derive the expressions (1.17), (1.19)
Use e.g. A. Bialas et al., Nucl. Phys. B111 (1976) 461
(1.18) Number of collisions:

$$
\begin{aligned}
& \bar{N}_{\text {coll }}^{A B}(\underline{b})=A B T_{A B}(\underline{b}) \sigma_{N N}^{\text {inel }} \\
& \bar{N}_{p a r t}^{A B}(\underline{b})=\frac{A \sigma_{i n}^{\text {inel }}(\underline{b})}{\sigma_{A B}^{\text {inel }}(\underline{b})}+\frac{B \sigma_{i n e l}^{\text {inel }}(\underline{b})}{\sigma_{A B}^{\text {inel }}(\underline{b})} \neq \bar{N}_{\text {coll }}^{A B}(\underline{b})+1
\end{aligned}
$$

(1.19) Number of participants:

1. There is a difference between 'analytical' and 'Monte Carlo' Glauber theory: For 'MC Glauber, a random probability distribution is picked from T_{A}.
2. The nuclear density is commonly taken to follow a Wood-Saxon parametrization (e.g. for $\mathrm{A}>16$)
(1.20)

$$
\rho(\vec{r})=\rho_{0} /(1+\exp [-(r-R) / c]) ; \quad R \equiv 1.07 A^{1 / 3} f m, c=0.545 \mathrm{fm} .
$$

C.W. de Jager, H.DeVries, C.DeVries, Atom. Nucl. Data Table 14 (1974) 479
3. The inelastic Cross section is energy dependent, typically
(1.21)

$$
\sigma_{n n}^{i n e l} \approx 40(65) \mathrm{mb} \quad \text { at } \quad \sqrt{s_{n n}}=100(2700) \mathrm{GeV}
$$

But $\sigma_{n n}^{\text {inel }}$ is sometimes used as fit parameter.

I. 9 Event Multiplicity in wounded nucleon model

Model assumption: If $\bar{n}_{n n}$ is the average multiplicity in an $n-\mathrm{n}$ collision, then
(1.22)

$$
\bar{n}_{A B}(b)=\left(\frac{1-x}{2} \bar{N}_{p a r t}^{A B}(b)+x \bar{N}_{\text {coll }}^{A B}(b)\right) \bar{n}_{N N}
$$

is average multiplicity in $\mathrm{A}+\mathrm{B}$ collision ($\mathrm{x}=0$ defines the wounded nucleon model).

The probability of having w_{b} wounded nucleons fluctuates around the mean,, so does the multiplicity n per event (the dispersion d is a fit parameter, say $d \sim 1$)
(1.23)

$$
P(n, \underline{b})=\frac{1}{\sqrt{2 \pi d \bar{n}_{A B}(\underline{b})}} \exp \left(-\frac{\left[n-\bar{n}_{A B}(\underline{b})\right]^{2}}{2 d \bar{n}_{A B}(\underline{b})}\right)
$$

How many events $\mathrm{dN}_{\text {events }}$ have event multiplicity dn ?
(1.24)

$$
\frac{d N_{\text {events }}}{d n}=\int d b P(n, b) \underbrace{\left[1-\left(1-\sigma_{N N} T_{A B}(b)\right)^{A B}\right]}_{1-P_{0}(b)}
$$

I.10 Wounded nucleon model vs. multiplicity

Compare data to multiplicity distribution (1.24): $\frac{d N_{\text {events }}}{d n}=\int d \underline{b} P(n, \underline{b})\left[1-P_{0}(\underline{b})\right]$

- determined by geometry only
- insensitive to details of particle production [there is only a weak dependence on parameter x in (1.22)]
- insensitive to collective effects
 Sensitivity to geometry but insensitivity to model-dependent dynamics makes $\frac{d N_{\text {events }}}{d n}$

A well-suited centrality measure (i.e. a measure of the impact parameter b)

I.11. Multiplicity as a Centrality Measure

The connection between centrality and event multiplicity can be expressed in terms of
(1.25) $\left\langle N_{\text {part }}^{A+A}\right\rangle_{n>n_{0}}=\frac{\int_{n_{0}} d n \int d b P(n, \underline{b})\left[1-P_{0}(\underline{b})\right] N_{p a r t}(\underline{b})}{\int_{n_{0}} d n \int d \underline{b} P(n, \underline{b})\left[1-P_{0}(\underline{b})\right]}$

- Centrality class $=$ percentage of the minimum bias cross section

I.12. Centrality Class fixes Impact Parameter

The connection between centrality and event multiplicity can be expressed in terms of
(1.25) $\left\langle N_{\text {part }}^{A+A}\right\rangle_{n>n_{0}}=\frac{\int_{n_{0}} d n \int d b P(n, \underline{b})\left[1-P_{0}(\underline{b})\right] N_{p a r t}(\underline{b})}{\int_{n_{0}} d n \int d \underline{b} P(n, \underline{b})\left[1-P_{0}(\underline{b})\right]}$

- Centrality class specifies range of impact parameters

I.13. Cross-Checking Centrality Measurements

The interpretation of min. bias multiplicity distributions in terms of centrality measurements can be checked in multiple ways, e.g.

1. Energy E_{F} of spectators is deposited in Zero Degree Calorimeter (ZDC)

$$
E_{F}=\left(A-N_{p a r t}(b) / 2\right) \sqrt{s} / 2
$$

I.14. Cross-Checking Centrality Measurements

The interpretation of min. bias multiplicity distributions in terms of centrality measurements can be checked in multiple ways, e.g.
2. Testing Glauber in $d+A u$ and in $p+A u(+n$ forward)

I.15. Final remarks on event multiplicity in $A+B$

There is no 1st principle QCD calculation of event multiplicity, neither in $p+p$ nor in $A+B$

- Total charged event multiplicity: models failed to predict RHIC

- and failed to predict LHC

I.16. Final remarks on event multiplicity in $A+B$

There is no 1st principle QCD calculation of event multiplicity, neither in $p+p$ nor in $A+B$

- Clear deviations from multiplicity of wounded nucleon model
- \sqrt{s} - dependence of event multiplicity not understood in pp and AA

ALICE Coll., PRL 106, 032301 (2001) arXiv:1012.1657

I.17. Final remarks on event multiplicity

Multiplicity distribution is not only used as centrality measure but:

Multiplicity (or transverse energy) thought to determine properties of produced matter
Bjorken estimate

$$
\varepsilon\left(\tau_{0}\right)=\frac{1}{\pi R^{2}} \frac{1}{\tau_{0}} \frac{d E_{T}}{d y}
$$

$$
\frac{d E_{T}}{d y} \approx \frac{d N}{d y}\left\langle E_{T}\right\rangle
$$

This estimate is based on geometry, thermalization is not assumed, numerically:

$$
\varepsilon^{S P S}\left(\tau_{0} \cong 1 \mathrm{fm} / \mathrm{c}\right)=3-4 \mathrm{GeV} / \mathrm{fm}^{3}
$$

II.1. Azimuthal Anisotropies of Particle Production

We know how to associate an impact parameter range $b \in\left[b_{\text {min }}, b_{\text {max }}\right]$ to an event class in $\mathrm{A}+\mathrm{A}$, namely by selecting a multiplicity class.

What can we learn by characterizing not only the modulus b, but also the orientation \underline{b} ?

II.2. Particle production w.r.t. reaction plane

Consider single inclusive particle momentum spectrum
(2.1) $\quad f(\vec{p}) \equiv d N / d \vec{p}$
(2.2) $\vec{p}=\binom{p_{y}=p_{T} \sin \phi}{p_{z}=\sqrt{p_{T}^{2}+m^{2}} \sinh Y}$

To characterize azimuthal asymmetry, measure n-th harmonic moment of (2.1) in some detector acceptance D [phase space window in ($\mathrm{p}_{\mathrm{T}}, \mathrm{Y}$)-plane].
(2.3) $\quad v_{n}(D) \equiv\left\langle e^{i n \phi}\right\rangle_{D}=\frac{\int_{D} d \vec{p} e^{i n \phi} f(\vec{p})}{\int_{D} d \vec{p} f(\vec{p})} \quad$ n-th order flow

Problem: Eq. (2.3) cannot be used for data analysis, since the orientation of the reaction plane is not known a priori.

II.3. Why is the study of v_{n} interesting?

- Single 2->2 process
- Maximal asymmetry
- NOT correlated to the reaction plane

- Many 2->2 or 2-> n processes
- Reduced asymmetry

$$
\sim 1 / \sqrt{N}
$$

- final state interactions
- asymmetry caused not only by multiplicity fluctuations
- collective component is correlated to the reaction plane
- NOT correlated to the reaction plane

The azimuthal asymmetry of particle production has a collective and a random component. Disentangling the two requires a statistical analysis of finite multiplicity fluctuations.

II.4. Cumulant Method

If reaction plane is unknown, consider particle correlations
(2.4) $\left\langle e^{i n\left(\phi_{1}-\phi_{2}\right)}\right\rangle_{D_{1} \wedge D_{2}}=\frac{\int_{D_{1} \wedge D_{2}} d \vec{p}_{1} d \vec{p}_{2} e^{i n\left(\phi_{1}-\phi_{2}\right)} f\left(\vec{p}_{1}, \vec{p}_{2}\right)}{\int_{D_{1} \wedge D_{2}} d \vec{p}_{1} d \vec{p}_{2} f\left(\vec{p}_{1}, \vec{p}_{2}\right)}$

A two-particle distribution has an uncorrelated and a correlated part
(2.6)

$$
\begin{equation*}
f\left(\vec{p}_{1}, \vec{p}_{2}\right)=f\left(\vec{p}_{1}\right) f\left(\vec{p}_{2}\right)+f_{c}\left(\vec{p}_{1}, \vec{p}_{2}\right) \tag{2.5}
\end{equation*}
$$

Assumption: Event multiplicity $\mathrm{N} \gg 1$
\longrightarrow correlated part is $\mathrm{O}(1 / \mathrm{N})$-correction to $f\left(\vec{p}_{1}\right) f\left(\vec{p}_{2}\right)$
(2.7) $\left\langle e^{i n\left(\phi_{1}-\phi_{2}\right)}\right\rangle_{D_{1} \wedge D_{2}}=v_{n}\left(D_{1}\right) v_{n}\left(D_{2}\right)+\underbrace{\langle\underbrace{\left\langle i n\left(\phi_{1}-\phi_{2}\right)\right.}\rangle_{D_{1} \wedge D_{2}}^{\text {corr }}}_{O(1 / N)}$ "Non-flow
(2.8)

If $v_{n}(D) \gg \frac{1}{\sqrt{N}}$,then non-flow corrections are negligible. What, if this is not the case?

II.5. 4-th order Cumulants

2nd order cumulants allow to characterize v_{n}, if $v_{n} \gg 1 / \sqrt{N}$.
Consider now 4-th order cumulants:
(2.9)

$$
\begin{aligned}
(1,2,3,4)= & (1)(2)(3)(4)+(1,2)_{c}(3)(4)+\ldots \\
& +(1,2)_{c}(3,4)_{c}+(1,3)_{c}(2,4)_{c}+(1,4)_{c}(2,3)_{c} \\
& +(1,2,3)_{c}(4)+\ldots \\
& +(1,2,3,4)_{c}
\end{aligned}
$$

If the system is isotropic, i.e. $v_{n}(D)=0$, then k-particle correlations are unchanged by rotation $\phi_{i} \rightarrow \phi_{i}+\phi$ for all i , and only labeled terms survive. This defines
(2.9)

$$
\begin{aligned}
& \left\langle\left\langle e^{i n\left(\phi_{1}+\phi_{2}-\phi_{3}-\phi_{4}\right)}\right\rangle\right\rangle \\
& \equiv\left\langle e^{i n\left(\phi_{1}+\phi_{2}-\phi_{3}-\phi_{4}\right)}\right\rangle-\left\langle e^{i n\left(\phi_{1}-\phi_{3}\right)}\right\rangle\left\langle e^{i n\left(\phi_{2}-\phi_{4}\right)}\right\rangle-\left\langle e^{i n\left(\phi_{1}-\phi_{4}\right)}\right\rangle\left\langle e^{i n\left(\phi_{2}-\phi_{3}\right)}\right\rangle
\end{aligned}
$$

For small, non-vanishing v_{n}, one finds
(2.10)

$$
\left\langle\left\langle e^{i n\left(\phi_{1}+\phi_{2}-\phi_{3}-\phi_{4}\right)}\right\rangle\right\rangle=-v_{n}^{4}+O\left(\frac{1}{N^{3}}, \frac{v_{2 n}^{2}}{N^{2}}\right)
$$

Improvement: signal can be separated from fluctuating background, if

$$
v_{N} \gg \frac{1}{N^{3 / 4}}
$$

II.6. LHC and RHIC Data on Elliptic Flow: $\underline{v}_{\underline{2}}$

(2.11)

$$
E \frac{d N}{d^{3} p}=\frac{1}{2 \pi} \frac{d N}{p_{T} d p_{T} d \eta}\left[1+2 v_{2}\left(p_{T}\right) \cos \left(2\left(\phi-\psi_{\text {reaction plane }}\right)\right)\right]
$$

- Signal $v_{2} \approx 0.2$ implies 2-1 asymmetry of particles production w.r.t. reaction plane.
- 'Non-flow' effect for 2 nd order cumulants
(2.12) $\quad N \sim 100 \Rightarrow 1 / \sqrt{N} \sim O\left(v_{2}\right)$

2nd order cumulants do not characterize solely collectivity.
(2.13) $\quad 1 / N^{3 / 4} \sim 0.03 \ll v_{2}$

Non-flow effects should disappear if we go from 2 nd to 4 th order cumulants.

II.7. Establishing collectivity in $\mathrm{v}_{\underline{2}}$

- pt-integrated v2 stabilizes at $4^{\text {th }}$ order cumulants
- pt-differential v2 from $2^{\text {nd }}$ and $4^{\text {th }}$ order cumulants

Elliptic flow signal is stable if reconstructed from higher order cumulants.
We have established a strong collective effect, which cannot be mimicked by multiplicity fluctuations in the reaction plane.

