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‘Preface’ 
Starting point: Quantum Chromodynamics, QCD, the theory of strong 
               interactions, is a mature theory with a precision frontier. 
               - background in search for new physics 
               - TH laboratory for non-abelian gauge theories 

Open fundamental question: How do collective phenomena and  
               macroscopic properties of matter emerge from the interactions 
               of elementary particle physics? 

Heavy Ion Physics: addresses this question in the regime of the 
                highest temperatures and densities accessible in laboratories. 

How? 1. Benchmark: establish baseline, in which collective  
                                      phenomenon is absent. 
             2. Establish collectivity: by characterizing deviations from baseline 
             3. Seek dynamical explanation, ultimately in terms of QCD. 

U.A.Wiedemann These lectures give examples of this ‘How?’ 



I.1. The very first measurement at an  
Heavy Ion Collider 
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What is the benchmark for multiplicity distributions? 
     Multiplicity in inelastic A+A collisions is  
     incoherent superposition of inelastic p+p collisions. 
(i.e. extrapolate p+p -> p+A -> A+A without collective effects) 

Glauber theory 

Signal proportional to multiplicity  

PHOBOS, RHIC, 2000 ALICE, PRL 105 (2010) 252301, arXiv:1011.3916 



I.2. Glauber Theory 
Assumption: inelastic collisions of two nuclei (A-B) can be described by 
            incoherent superposition of the collision of “an equivalent number of  
            nucleon-nucleon collisions”.  
            How many? 
            Establish counting based on 
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Npart= 7 

Ncoll.= 10 

Nquarks +gluons = ? 

Ninelastic= 1 

Participating nucleons 

Spectator nucleons 

To calculate Npart or Ncoll,  take   

            = inelastic n-n cross section 

A priori, no reason for this choice other than 
that it gives a useful parameterization.  

€ 

σ



I.3. Glauber theory for n+A 

b 

€ 

ρ(b,z)

€ 

dz dbρ(b,z)∫ =1

€ 

TA (b) = dz ρ(b,z)
−∞

∞

∫

Npart = number of participants = number of ‘wounded nucleons’, 
              which undergo at least one collision 
Ncoll = number of n+n collisions, 
             taking place in an n+A or A+B collision 

We want to calculate: 

We know the single nucleon probability distribution within a nucleus A, 
the so-called nuclear density 

(1.1) 

Normally, we are only interested in the transverse density, 
the nuclear profile function  

(1.2) 
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I.4. Glauber theory for n+A 

€ 

dsσ (s)∫ =σ nn
inel

The probability that no interaction occurs at impact parameter b: 

If nucleon much smaller than nucleus 

€ 

P0(b) =Π
i=1

A
1− dsi

ATA∫ si
A( )σ b − si

A( )[ ]

€ 

σ(b − s) ≈σ nn
inel δ(b − s) b 

€ 

si
A

Transverse position          
of i-th nucleon in nucleus A  

€ 

P0(b) = 1−TA b( )σ nn
inel[ ]

A

The resulting nucleon-nucleon cross section is: 

  

€ 

σ nA
inel = db∫ 1− P0(b)( ) = db∫ 1− 1−TA b( )σ nn

inel[ ]
A[ ]

A>>n →   db∫ 1− exp −ATA b( )σ nn
inel[ ][ ]

= db∫ ATA b( )σ nn
inel −

1
2
ATA b( )σ nn

inel( )2 +…
 

  
 

  

Optical limit 

Double counting 
correction 

(1.3) 

(1.4) 

(1.5) 

(1.6) 

(1.7) 



I.5. Glauber theory for n+A 
To calculate number of collisions: probability of interacting with i-th nucleon in A is 

€ 

p(b,si
A ) = dsi

ATA∫ si
A( )σ b − si

A( ) = TA (b)σ nn
inel

b 

€ 

si
A

Transverse position          
of i-th nucleon in nucleus A  

€ 

P(b,n) =
A
n
 

 
 
 

 
 1− p( )A−n pn

Probability that projectile nucleon undergoes n collisions 
= prob that n nucleons collide and A-n do not  

Average number of nucleon-nucleon collisions in n+A  

€ 

Ncoll
nA (b) = n

n= 0

A

∑ P(b,n) = n
n= 0

A

∑
A
n
 

 
 
 

 
 1− p( )A−n pn = A p

= ATA b( )σ nn
inel

Average number of nucleon-nucleon collisions in n+A  

€ 

N part
nA
(b) =1+ Ncoll

nA
(b)

(1.8) 

(1.9) 

(1.10) 

(1.11) 
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I.6. Glauber theory for A+B collisions 
B 

A b   

€ 

TAB (
 
b ) = d

 
s 

−∞

∞

∫ TA (
 
s )TB (

 
b −
 
s )

We define the nuclear overlap function 

b 

participants 
spectators 

A 

B 

sB
The average number of collisions of nucleon 
at sB with nucleons in A is 

€ 

Ncoll
AB
(b) = B dsBTB (s

B )∫ Ncoll
nA
(b − sB )

= AB dsTB (s)∫ TB (b − s)σ nn
inel

= ABTAB (b)σ nn
inel

€ 

Ncoll
nA
(b − sB ) = ATA (b − s

B )σ nn
inel

The number of nucleon-nucleon collisions in 
an A-B collision at impact parameter b is 

(1.12) 

(1.13) 

(1.14) 

determined in terms of 
nuclear overlap only 
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I.7. Glauber theory for A+B collisions 

b 

participants 
spectators 

A 

B 

sB

€ 

p(sB , si
A{ }) =1− 1−σ (sB − si

A )[ ]
i=1

A

∏

Probability that nucleon at      in B is 
wounded by A in configuration     

€ 

si
A{ }

€ 

sB

€ 

P(wb,b) =
B
wB

 

 
 

 

 
 dsi

A∫ ds j
B TA (si

A )TB (s j
B − b)

j=1

B

∏
i=1

A

∏
 

 
  

 

 
  p(s1

B , si
A{ })...

...p(swB

B , si
A{ }) 1− p(swB +1

B , si
A{ })[ ]... 1− p(sBB , siA{ })[ ]

Probability of finding        wounded  
nucleons in nucleus B: 

€ 

wB

€ 

σAB
inel = db∫ σAB (b) = db∫ P(wB = 0,b)

= db∫ 1− dsi
A∫ ds j

B TA (si
A )TB (s j

B − b)
j=1

B

∏
i=1

A

∏
 

 
  

 

 
  Πj=1

B
1− p(s j

B , si
A{ })[ ]

 

 
 
 

 

 
 
 

≈ db∫ 1− 1−TAB (b)σNN
inel[ ]

AB[ ]

Nuclear overlap function defines inelastic A+B cross section. 

(1.15) 

(1.16) 

(1.17) 
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I.8. Glauber theory for A+B collisions 
Problem 1: derive the expressions (1.17), (1.19)   
Use e.g. A. Bialas et al., Nucl. Phys. B111 (1976) 461 

It can be shown 

Number of collisions: 

€ 

N coll
AB (b) = ABTAB (b)σNN

inel

Number of participants: 

€ 

N part
AB (b) =

AσB
inel (b)

σAB
inel (b)

+
Bσ A

inel (b)
σAB

inel (b)
≠ N coll

AB (b) +1

(1.18) 

(1.19) 

1.  There is a difference between ‘analytical’ and ‘Monte Carlo’ Glauber theory:  For 
‘MC Glauber, a random probability distribution is picked from TA. 

2.   The nuclear density is commonly taken to follow a Wood-Saxon 
parametrization (e.g. for A > 16) 

3.   The inelastic Cross section is energy dependent, typically 

       But           is sometimes used as fit parameter. 

  

€ 

ρ
 
r ( ) = ρ0 1+ exp −(r − R) c[ ]( ); R ≡1.07A1/ 3 fm,c = 0.545 fm.(1.20) 

C.W. de Jager, H.DeVries, C.DeVries, Atom. Nucl. Data Table 14 (1974) 479 

€ 

σ nn
inel ≈ 40 (65)mb at snn =100 (2700)GeV .

€ 

σ nn
inel

(1.21) 
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I.9 Event Multiplicity in wounded nucleon model 

€ 

n AB (b) =
1− x
2

N part
AB (b) + x N coll

AB (b)
 

 
 

 

 
 n NN

€ 

P(n,b) =
1

2π d n AB (b)
exp −

n − n AB (b)[ ]2

2d n AB (b)

 

 
  

 

 
  

€ 

n nn

  

€ 

dNevents

dn
= db∫ P(n,b) 1− 1−σNNTAB (b)( )AB[ ]

1−P0 (b )
         

Model assumption: If       is the average multiplicity in an n-n collision, then 

is average multiplicity in A+B collision  
(x=0 defines the wounded nucleon model). 

The probability of having wb wounded nucleons fluctuates around the mean,, 
 so does the multiplicity n per event (the dispersion d is a fit parameter, say d~1) 

How many events dNevents have event multiplicity dn? 

(1.22) 

(1.23) 

(1.24) 
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I.10 Wounded nucleon model vs. multiplicity 
Compare data to  multiplicity distribution (1.24): 

€ 

dNevents

dn
= db∫ P(n,b) 1− P0(b)[ ]

€ 

dNevents

dn

•  determined by geometry only  
•  insensitive to details of particle  
   production [there is only a weak 
   dependence on parameter x in (1.22)] 
•  insensitive to collective effects 

A well-suited centrality measure 
(i.e. a measure of the impact parameter b) 

Sensitivity to geometry but insensitivity to model-dependent dynamics makes   

€ 

dNevents

dn

B 

A b U.A.Wiedemann 

Kharzeev, Nardi, PLB 507 (2001) 121 



I.11. Multiplicity as a Centrality Measure 

√sNN = 200 GeV € 

Npart
A +A

n>n0
=

dn dbP(n,b) 1− P0(b)[ ]Npart (b)∫n0
∫

dn dbP(n,b) 1− P0(b)[ ]∫n0
∫

•  Centrality class = percentage of the minimum bias cross section 

B 

A b 

The connection between centrality and event multiplicity can be  
expressed in terms of 

(1.25) 
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ALICE, 2010 



I.12. Centrality Class fixes Impact Parameter 

1200 
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N coll
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N part
Au Au

b in fm 0-5 % 10-30 %

€ 

Npart
A +A

n>n0
=

dn dbP(n,b) 1− P0(b)[ ]Npart (b)∫n0
∫

dn dbP(n,b) 1− P0(b)[ ]∫n0
∫

•  Centrality class specifies range of impact parameters 

B 

A b 

The connection between centrality and event multiplicity can be  
expressed in terms of 

(1.25) 
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I.13. Cross-Checking Centrality Measurements 

€ 

EF = A − Npart (b) /2( ) s /21. Energy  EF of spectators is deposited 
in Zero Degree Calorimeter (ZDC) 

The interpretation of min. bias multiplicity distributions in terms of centrality 
measurements can be checked in multiple ways, e.g. 
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ALICE, PRL 105 (2010) 252301, arXiv:1011.3916 



I.14. Cross-Checking Centrality Measurements 

2. Testing Glauber in d+Au and in p+Au(+ n forward) 

The interpretation of min. bias multiplicity distributions in terms of centrality 
measurements can be checked in multiple ways, e.g. 
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STAR Coll. 



I.15. Final remarks on event multiplicity in A+B  

•  Total charged event multiplicity: 
   models failed to predict RHIC 

There is no 1st principle QCD calculation of event multiplicity, neither in p+p nor in A+B  

U.A.Wiedemann 

•  and failed to predict LHC 



I.16. Final remarks on event multiplicity in A+B  

•  Clear deviations from multiplicity 
   of wounded nucleon model 

•         - dependence of event multiplicity 
   not understood in pp and AA 

There is no 1st principle QCD calculation of event multiplicity, neither in p+p nor in A+B  

U.A.Wiedemann 

€ 

s

ALICE Coll., PRL 106, 032301 (2001) arXiv:1012.1657 



I.17. Final remarks on event multiplicity 

Multiplicity (or transverse energy) thought to determine properties of produced matter 

This estimate is based on geometry, thermalization is not assumed, numerically: 

€ 

ε(τ 0) =
1

π R2
1
τ 0

dET

dy

€ 

dET

dy
≈
dN
dy

ET

€ 

εSPS (τ 0 ≅1 fm /c) = 3− 4GeV / fm3

Bjorken 
estimate 

Multiplicity distribution is not only used as centrality measure but: 
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II.1. Azimuthal Anisotropies of Particle Production 
We know how to associate an impact parameter range   
to an event class in A+A, namely by selecting a multiplicity class. 

€ 

b∈ bmin,bmax[ ]

What can we learn by characterizing not only 
the modulus    , but also the orientation      ?  

€ 

b

€ 

b
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ALICE, 2010 



II.2. Particle production w.r.t. reaction plane 
Particle with 
momentum p  

b 

€ 

φ

Consider single inclusive particle 
momentum spectrum 

  

€ 

f (  p ) ≡ dN d
 
p 

  

€ 

 
p =

px = pT cosφ
py = pT sinφ

pz = pT
2 + m2 sinhY

 

 

 
 
 

 

 

 
 
 

To characterize azimuthal asymmetry, measure n-th harmonic moment of (2.1) 
in some detector acceptance D [phase space window in (pT,Y)-plane]. 

(2.1) 

(2.2) 

  

€ 

vn D( ) ≡ ei n φ
D

=
d
 
p ei n φ

D∫ f (  p )

d
 
p 

D∫ f (  p )
n-th order flow (2.3) 

Problem: Eq. (2.3) cannot be used for data analysis, since the  
                orientation of the reaction plane is not known a priori.  
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II.3. Why is the study of vn interesting? 

•  Single 2->2 process 
•  Maximal asymmetry 
•  NOT correlated to  
  the reaction plane 

•  Many 2->2 or 2-> n 
  processes  
•  Reduced asymmetry 

•  NOT correlated to  
  the reaction plane 

€ 

~ 1 N

•  final state interactions  
•  asymmetry caused not only 
  by multiplicity fluctuations 
•  collective component is  
  correlated to the reaction plane 

The azimuthal asymmetry of particle production has a collective 
and a random component. Disentangling the two requires a 
statistical analysis of finite multiplicity fluctuations. 
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II.4. Cumulant Method 

A two-particle distribution has an uncorrelated and a correlated part 

“Non-flow 
effects” 

  

€ 

ei n φ1−φ2( )
D1∧D2

= vn D1( ) vn D2( ) + ei n φ1−φ2( )
D1∧D2

corr

O 1 N( )
       

If reaction plane is unknown, consider particle correlations   

  

€ 

ei n (φ1−φ2 )
D1∧D2

=
d
 
p 1d
 
p 2 ei n (φ1−φ2 )

D1∧D2
∫ f (  p 1,

 
p 2)

D1∧D2
∫ d

 
p 1d
 
p 2 f (  p 1,

 
p 2)

  

€ 

f (  p 1,
 
p 2) = f (  p 1) f (  p 2) + fc (

 
p 1,
 
p 2)

€ 

(1,2) = (1)(2) + (1,2)c

(2.4) 

(2.5) 

(2.6) Short hand 

Assumption: Event multiplicity N>>1 
                                    correlated part is O(1/N)-correction to  

Correlated part 

  

€ 

f (  p 1) f (  p 2)

If                               ,then non-flow corrections are negligible. 

                                   What, if this is not the case? 

€ 

vn D( ) >>
1
N

(2.7) 

(2.8) 
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II.5. 4-th order Cumulants 

Borghini, Dinh, Ollitrault, PRC (2001) 

€ 

vn >>1 N2nd order cumulants allow to characterize vn, if                       . 
Consider now 4-th order cumulants:   

  

€ 

(1,2,3,4) = (1)(2)(3)(4) + (1,2)c (3)(4) +…

+ (1,2)c (3,4)c + (1,3)c (2,4)c + (1,4)c (2,3)c
+ (1,2,3)c (4) +…

+ (1,2,3,4)c
If the system is isotropic, i.e. vn(D)=0, then k-particle correlations are unchanged 
by rotation                         for all i, and only labeled terms survive. This defines  

€ 

φi →φi + φ

(2.9) 

(2.9) 

€ 

ei n φ1 +φ2−φ3−φ4( )

≡ ei n φ1 +φ2−φ3−φ4( ) − ei n φ1−φ3( ) ei n φ2−φ4( ) − ei n φ1−φ4( ) ei n φ2−φ3( )

For small, non-vanishing vn, one finds  

€ 

ei n φ1 +φ2−φ3−φ4( ) = −vn
4 +O 1

N 3 , v2n
2

N 2( )
Improvement: signal can be separated 
                       from fluctuating background, if 

(2.10) 

€ 

vN >>
1

N 3 / 4



II.6. LHC and RHIC Data on Elliptic Flow: v2 

●  Momentum space: 

Reaction 
plane 

€ 

E dN
d3p

=
1
2π

dN
pTdpTdη

1+ 2v2 pT( )cos 2(φ −ψreaction plane )( )[ ]

€ 

N ~ 100⇒1 N ~ O(v2)

€ 

1 N 3 4 ~ 0.03 << v2

•  ‘Non-flow’ effect for 2nd order cumulants 

•  Signal               implies 2-1 asymmetry of  
  particles production w.r.t. reaction plane. 

€ 

v2 ≈ 0.2

Non-flow effects should disappear if we go from 
2nd to 4th order cumulants. 

(2.11) 

2nd order cumulants do not characterize 
solely collectivity. 

(2.12) 

(2.13) 

U.A.Wiedemann 



II.7. Establishing collectivity in v2 

STAR Coll, Phys. Rev. C66 (2002) 034904 

We have established a strong collective effect, which 
cannot be mimicked by multiplicity fluctuations in the 
reaction plane. 

Elliptic flow signal is stable if reconstructed from higher order cumulants. 
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•  pt-integrated v2 stabilizes at 4th  
   order cumulants 

•  pt-differential v2 from 2nd and 4th  
   order cumulants 

ALICE Coll., arXiv:1011.3914 


