Fusion Plasma Physics and ITER: An Introduction

1. Plasma Physics for Magnetic Fusion

D J Campbell

ITER Organization, Route de Vinon sur Verdon, 13115 St Paul lez Durance, France

Acknowledgements:

Many colleagues in the ITER Organization and the international fusion programme

The views and opinions expressed herein do not necessarily reflect those of the ITER Organization.

Overview of Lectures

- 1. Fusion Plasma Physics in Magnetic Fusion DJ Campbell
- 2. Physics of Tokamak Plasmas DJ Campbell
- 3. Fusion Technology for ITER and the ITER Project G Janeschitz
- 4. Further development towards a Fusion Power Plant G Janeschitz

Lecture 1 - Synopsis

- Introduction to thermonuclear fusion
 - some aspects of inertial confinement fusion
- Basics of magnetic confinement fusion the tokamak
- (Some) plasma physics for magnetic confinement fusion in tokamaks
- The ITER Project

An Introduction - ITER

- 7 partners representing >50% of the world's population have embarked on the ITER project
- ITER is designed to produce 500MW of fusion power (tenfold power amplification) for extended periods of time (several 100s)
- 10 years construction
 20 years operation
 5 years de-activation
- These lectures will explain the background to ITER and how it fits into the development of fusion energy

ITER tokamak

ITER: Fusion Power Production

Introduction to Thermonuclear Fusion

Why Fusion ?

- Fuel: abundant, world-wide distributed:
 - sufficient deuterium in seawater for millions of years
 - tritium is produced from lithium
 sufficient ore supplies for thousands of years (millions of years including seawater resources

Safety: no risk of major accidents:

- reactor contains fuel for only a few minutes burn
- Waste: no long-term burden:
 - low radio-toxicity after < 100 years
 - no CO₂

Fusion – the fundamental principle

 Energy gain from fusion, like fission, is based on Einstein's equation:

$E = \Delta mc^2$

- mass loss for DT reactions corresponds to ~ 0.4%
- As illustrated, energy gain per unit mass is greater for fusion
 - energy gain/ reaction:

DT fusion: 17.6 MeV U fission: ~200 MeV

Essential Fusion Reactions

+ 20% of Energy (3.5 MeV)

+ 80% of Energy (14.1 MeV)

• The D-T fusion reaction is the simplest to achieve under terrestrial conditions

 $^{2}D + ^{3}T \Rightarrow ^{4}He (3.5 \text{ MeV}) + ^{1}n (14.1 \text{ MeV})$

Two other important reactions for DT fusion:

 $^{1}n + ^{6}Li \Rightarrow ^{4}He + ^{3}T + 4.8 MeV$

 $^{1}n + ^{7}Li \Rightarrow ^{3}He + ^{3}T + ^{1}n - 2.5 MeV$

these reactions will allow a fusion reactor to breed tritium

Fusion Power Production

- High temperatures (~10 keV) are required for significant thermonuclear fusion energy production (⇒ dealing with plasmas!):
 - nuclei must overcome Coulomb barrier to approach close enough to fuse

 \Rightarrow T ~ 300 keV required to overcome Coulomb barrier of ~0.4 MeV

 but, reaction rate is dominated by a small population of high energy nuclei which react by quantum tunnelling

 \Rightarrow for 100 keV nuclei, tunnelling probability, w = 3.2 × 10⁻²

• Fusion power density for an optimal 50:50 D-T mixture:

$$P_{F} = \frac{n^{2}}{4} \left\langle \sigma v \right\rangle E_{F} = \frac{p^{2}}{16} \frac{\left\langle \sigma v \right\rangle}{\left(kT \right)^{2}} E_{F} \quad (E_{F} = 17.6 MeV)$$

- e.g. for magnetic fusion reactor parameters, with p ~ 10 atm, $P_F \sim 7.5 \text{ MWm}^{-3}$

Power Gain – the Lawson Criterion

- Obtaining the temperature required to produce fusion reactions involves heating the plasma
 - for a net power gain, fusion power out must exceed input heating power (including correction for loss processes, e.g. bremsstrahlung, synchrotron radiation)
- One can define a parameter, τ_E , the energy confinement time, which characterizes the rate of power loss:

$$\tau_E = \frac{W_{th}}{P_{loss}} = 3 \frac{\int nkT \, dV}{P_{loss}}$$

• Then, the overall power balance can be written (P_{heat} = ext power):

$$P_{heat} = \left(\frac{3\overline{n}k\overline{T}}{\tau_{E}} - \frac{n^{2}}{4}\langle\sigma v\rangle E_{\alpha}\right) V$$
Ignition (P_{heat} = 0) implies: $\overline{n}\tau_{E} > \frac{12}{\langle\sigma v\rangle}\frac{k\overline{T}}{E_{\alpha}} \Rightarrow Q_{DT} = \frac{P_{F}}{P_{heat}} \to \infty$

Power Gain – the Lawson Criterion

Plasma Fusion Performance

<i>Temperature (T_i):</i>	1-2 × 10 ⁸ K (~10 × temperature of sun's core)		
Density (n _i):	1 × 10 ²⁰ m ⁻³ (~10 ⁻⁶ of atmospheric particle density)		
Energy confinement time (τ_E): few seconds (\propto current \times radius ²) (plasma pulse duration ~1000s)			
Fusion power amplification	$Q = \frac{Fusion Power}{Input Power} \sim n_i T_i \tau_E$		
⇒ Present devices: Q ≤ 1			
<i>⇒ITER:</i> Q ≥ 10			
\Rightarrow "Controlled ignition": Q \geq 30			

Plasma Fusion Performance – Tokamaks Fusion Triple Product

- Existing experiments have achieved nTτ values
 ~ 1×10²¹ m⁻³skeV
 - ~ Q_{DT} = 1
- JET and TFTR have produced DT fusion powers of >10MW for ~1s
- ITER is designed to a scale which should yield
 Q_{DT} ≥ 10 at a fusion power of 400 - 500MW for 300-500s

Inertial Confinement Fusion

- The US National Ignition Facility at Livermore is expected to achieve ignition within the next 2 years:
 - uses high power lasers to compress a small DT capsule embedded in a "hohlraum" (indirect drive)

WJ Hogan, Ch. 8 in Landolt-Börnstein-Handbook on Energy Technologies, Springer Verlag (2005)

Inertial Confinement Fusion

• Concept of ignition in MCF and ICF is somewhat different:

- in MCF, ignition criterion is based on power balance
- in ICF, ignition criterion is based on burn propagation in capsule and fuel burnup criterion

on:

 $nT\tau_{E} \sim 5 \times 10^{21} (m^{-3} keV.s)$

(fuel burn-up fraction ~ few %)

• ICF criterion:

 $\rho R \sim 2 (kg.m^{-2})$

(fuel burn-up fraction $\sim 30\%$)

	ITER	NIF
n _i (m ⁻³)	1×10 ²⁰	1.1×10 ³¹
ρ (kgm ⁻³)	4.2×10 ⁻⁷	5.7×10 ⁴
<t> (keV)</t>	~ 10	~ 10
(atm)	3.3	4.5×10 ¹¹
т _Е (S)	~ 3.5	~ 10 ⁻¹⁰
a (m)	2.0	3.5×10⁻⁵
V (m ³)	830	1.8×10 ⁻¹³
E _{plas} (J)	3.5×10 ⁸	9.3×10 ³
Output	500 MW	10-20 MJ

Basics of Magnetic Confinement Fusion: The Tokamak

Plasma Toroidal Magnetic Confinement

 Magnetic fields cause ions and electrons to spiral around the field lines:

$$F = q(E + v \times B)$$

 in a toroidal configuration plasma particles are lost to the vessel walls by relatively slow diffusion across the field lines

A special version of this torus is called a tokamak:

'toroidal chamber' and 'magnetic coil' (Russian)

Magnetic Confinement in a Tokamak

The Tokamak:

External coils

- to produce a toroidal magnetic field

Transformer with primary winding

- to produce a toroidal current in the plasma
- this plasma current creates a poloidal magnetic field

• Finally, poloidal coils

- to control the position and shape of the plasma

JET: Joint European Torus

- JET is currently the largest tokamak
 - Major/ minor radius: 3 m/ 1 m
 - Plasma volume ~100 m³
 - Toroidal field: 3.4 T
 - Plasma Current: 7 MA
- In DT experiments in 1997, a peak fusion power of 16 MW was produced (Q_{DT} ~ 0.6)

JET - Internal

Magnetic Confinement in a Tokamak

- In configurations with only a toroidal field, ions and electrons drift vertically in opposite directions:
 - caused by field gradient and curvature
 - resultant electric field destroys plasma
- An additional poloidal field allows particles to follow helical paths, cancelling the drifts
- "Winding number" of helix is an important stability parameter for the system:

$$q_{c} = \frac{aB_{\phi}}{RB_{\theta}}$$

- q = safety factor
- R/a = aspect ratio

Toroidal Magnetic Confinement Systems

- Numerous toroidal confinement configurations are being studied:
 - Tokamak has progressed most rapidly and is ready for the "thermonuclear" step
- Note that in the stellarator, the helical magnetic surfaces are produced entirely by external coils:

A Digression: Stellarators

Wendelstein 7-X (Germany) Modular Stellarator Large Helical Device (Japan) Heliotron

- Operation without a plasma current has some advantages (eg steady-state operation), but coil configuration is more complicated
 - LHD is already in operation, while W7-X will enter operation in middle of decade
 - overall, stellarator energy confinement is similar to that in "equivalent current" tokamaks

Plasma Equilibrium in a Tokamak

- Plasma is force-free, ie "in equilibrium":
 - implies both internal and external force balance
 - ignoring internal flows and electric fields, force balance equation takes form:

$$\mathbf{j} \times \mathbf{B} = \nabla p$$

- It follows that

 $\mathbf{B} \bullet \nabla p = \mathbf{j} \bullet \nabla p = 0$

- ⇒ pressure is constant on magnetic surfaces
- ⇒ current lines lie within magnetic surfaces
- Can define poloidal magnetic flux function, Ψ , satisfying,

 $\mathbf{B} \bullet \nabla \Psi = \mathbf{0}$

Plasma Equilibrium in a Tokamak

• Formal definition of safety factor:

$$q = \frac{d\Phi}{d\Psi} \xleftarrow{\text{toroidal flux}} poloidal flux}$$

- absolute value of *q* and its variation across the plasma radius are important in plasma stability
- define magnetic shear as:

$$S = \frac{r}{q} \frac{dq}{dr}$$

 by elongating the plasma, more current can be squeezed into the plasma ring at fixed q:

$$\kappa = \frac{b}{a}$$

 Typically the pressure (temperature, density) and current profiles are peaked on the plasma axis:

- the profile of q is then the inverse, with $q(0) \sim 1$

Plasma Equilibrium in a Tokamak

 Since there internal force balance between the plasma pressure and the magnetic field, it is conventional to work with a normalized pressure, poloidal beta:

$$\beta_{p} = \frac{2\mu_{0} \int p.dV}{\left\langle B_{\theta}(a) \right\rangle_{line}^{2}.V}$$

- when $\beta_p < 1$, plasma is paramagnetic when $\beta > 1$ plasma is diamagnetic
- when $\beta_p > 1$, plasma is diamagnetic
- equilibrium condition limits β_p to approximately $\beta_p < R/a$
- The plasma beta, i.e. pressure normalized to the toroidal field, is an important measure of plasma stability and of efficient use of field:

$$\beta(\%) = 100 \times \frac{2\mu_0 \int p.dV}{B_{\phi}^2(0).V}$$

• The plasma internal inductance characterizes how peaked the current profile is and is also a significant factor in plasma stability:

$$\ell_{i} = \frac{\left\langle B_{\theta}^{2} \right\rangle_{vol}}{\left\langle B_{\theta}^{2}(a) \right\rangle_{flux}} = \frac{4U_{p}}{\mu_{0}R_{0}l_{p}^{2}} \quad \text{stored poloidal field energy inside plasma}$$

(Some) plasma physics for magnetic confinement fusion in tokamaks

Some Basic Plasma Physics

 Plasmas studied in fusion research are essentially, quasi-neutral, but there is a characteristic scale length for shielding of the potential due to individual charges, the Debye length:

$$\lambda_D = \left(\frac{\varepsilon_0 T}{ne^2}\right)^{1/2} = 2.35 \times 10^5 \left(\frac{T}{n}\right)^{1/2} (T \text{ in keV})$$

- the assumption of quasi-neutrality is satisfied if $n\lambda_D^3 >> 1$ (~10⁸ in tokamak)
- Characteristic plasma frequency:

$$\omega_{p,e} = \left(\frac{ne^2}{\varepsilon_0 m_e}\right)^{1/2} = 56.4n^{1/2} \text{ s}^{-1}$$

• Motion of charged particles in confining magnetic fields can be characterized as a gyro-motion around of Larmor radius, ρ_L , around a guiding centre:

$$\rho_{Lj} = \sqrt{2} \frac{m_j v_{Tj}}{\left| e_j \right| B}$$

- \thicksim 100 μm for electrons at 10keV and 3T
- ~ 5mm for protons at 10keV and 3T

Particle Orbits in the Tokamak

JA Wesson, *Tokamaks*, 3rd edition, OUP (2004)

- Gradients and curvature in the magnetic field lead to modifications in the particle trajectories:
 - "Passing" particles orbit shift: $\delta r_p \sim \varepsilon . \rho_{L\theta} = q . \rho_{L\phi}$ ($\varepsilon = a / R$)
 - "Trapped" particles "banana" width: $\Delta r_t \sim \varepsilon^{0.5} \rho_{L\theta}$
 - Guiding centre orbit of trapped particles bounce back and forth on outer half of torus due to magnetic mirror formed by toroidal field ($B_{\phi} = R_0 B_0/R$)
 - At low collision frequencies, a fraction of particles are trapped: $f = \sqrt{2r} / (R_0 + r)$

Plasma Resistivity

 How does one calculate the current achievable in a tokamak plasma (ignoring stability considerations)?

- Ohm's law for magnetized plasma:

$$E + \mathbf{v} \times \mathbf{B} = \eta \mathbf{j}$$
inductive electric field
fluid velocity magnetic field
- average ionic charge number, "effective charge": $Z_{eff} = \frac{\sum_{i=1}^{n} n_{i} Z_{i}^{2}}{n_{e}}$

Coulomb logarithm characterizes average over electron-ion interactions:

$$\ln \Lambda_{ei} = 15.2 - \frac{1}{2} \ln \left(\frac{n_e}{10^{20}} \right) + \ln (T_e) \quad (T_e \text{ in keV})$$

- "Classical" (or Spitzer) parallel resistivity:

$$\eta_{par} = 1.65 \times 10^{-9} f(Z_{eff}) Z_{eff} \frac{\ln \Lambda_{ei}}{T_e^{1.5}} \Omega m \quad (T_e \text{ in keV}) \quad (f(Z_{eff}) \sim 1)$$

 $-\,$ e.g. T_{e} = 1keV, η_{par} ~ 2 ×10^{-8} Ωm – room temperature copper

"Neoclassical" Plasma Resistivity

 "Trapping" of particles in toroidal magnetic mirrors leads to an enhancement of the plasma resistivity:

$$\eta_{neo} \approx \frac{\eta_{par}}{(1 - \epsilon^{0.5})^2} f(v^*, \epsilon, Z_{eff})$$

- this effect first became detectable in the hot "collisionless" plasmas characteristic of JET scale devices
- Comparisons between resistivity profiles calculated from T_e measurements and from resistive diffusion analysis of plasma current showed better agreement with the neoclassical resistivity

"Bootstrap" Current

M Kikuchi, M Azumi, Plasma Phys Control Fusion 37 1215(1995)

- The "bootstrap" current is a further "neoclassical" consequence of the presence of trapped particles:
 - momentum exchange between trapped and passing particles, together with density and temperature gradients, lead to an additional component of current:

- locally:
$$j_{bs}(\varepsilon \rightarrow 1) = -\frac{1}{B_{\theta}}\frac{dp}{dr}$$
 globally: $I_{bs} = C\varepsilon^{1/2}\beta_{\rho}I_{\rho}$ (C ~ 1/3 – 2/3)

Overview of a Tokamak Plasma Pulse

Simulated ITER plasma pulse

Tokamak Plasma Pulse – Flux Consumption

• Flux consumption during an ITER plasma pulse:

$$\Psi_{\textit{tot}} = \Psi_{\textit{bd}} + \Psi_{\textit{ramp}} + \Psi_{\textit{ind}} + \Psi_{\textit{res}}$$

 Ψ_{bd} = breakdown loss ~ 5 - 10 Wb

 $\Psi_{ramp} = C_E \mu_0 R_0 I_p \sim 25 \text{ Wb} (C_E \sim 0.4 - 0.5 \text{ is an empirical coefficient})$

$$\begin{split} \Psi_{ind} &= L_p I_p \sim 180 \text{ Wb} \\ \left[L_p &= \mu_0 R_0 \left(\ln \frac{8R_0}{a} + \frac{\ell_i}{2} - 2 \right) \approx 2R_0 \ (\mu \text{H}) \right] \\ \Psi_{res} &= \text{resistive loss} = V_1 I_p \sim 30 - 40 \text{ Wb} \end{split}$$
$$\Psi_{tot} \sim 240 - 260 \text{ Wb}$$

- During the current flat-top at 15 MA, the single turn loop voltage, V_I < 100 mV, due to:
 - the high plasma temperature ($T_e(0) \sim 25 \text{ keV}$)
 - a bootstrap current contribution of ~10%
 - external "non-inductive" current drive of ~10%

The ITER Project

What is ITER?

ITER is a major international collaboration in fusion energy research involving the EU (plus Switzerland), China, India, Japan, the Russian Federation, South Korea and the United States

- The overall programmatic objective:
 - to demonstrate the scientific and technological feasibility of <u>fusion</u> <u>energy</u> for peaceful purposes
- The principal goal:
 - to design, construct and operate a <u>tokamak experiment</u> at a scale which satisfies this objective
- ITER is designed to confine a <u>Deuterium-Tritium plasma</u> in which <u> α -particle heating</u> dominates all other forms of plasma heating:

⇒ a burning plasma experiment

ITER Scope - Mission Goals

Physics:

- ITER is designed to produce a plasma dominated by $\alpha\mbox{-particle}$ heating
- produce a significant fusion power amplification factor (Q ≥ 10) in long-pulse operation
- aim to achieve steady-state operation of a tokamak (Q = 5)
- retain the possibility of exploring 'controlled ignition' ($Q \ge 30$)

Technology:

- demonstrate integrated operation of technologies for a fusion power plant
- test components required for a fusion power plant
- test concepts for a tritium breeding module

ITER - Major Components

The ITER Project - Current Status

- Spring 2006: ITER Joint Work Site established in Cadarache design teams arrive from Naka and Garching
- November 2006: ITER Agreement signed in Paris
- Late 2006: Design Review begins
- Early 2007: Construction activities launched
- October 2007: ITER Organization formally established
- July 2010: ITER Baseline (scope, schedule, cost) approved by ITER Council
- July 2010: New Director-General, Osamu Motojima appointed by ITER Council
- August 2010: Building construction begins on-site

ITER Overall Project Cost (OPC)

- The total cost for the Construction Phase approved in July 2010 is 4584.7 kIUA
- Table shows total cost over lifetime of project:

Construction Phase	4584.7 kIUA
Operation Phase	188 kIUA per year
Deactivation Phase	EUR 281 Million
Decommissioning Phase	EUR 530 Million

NB: 1 kIUA = 1M \$US (1989) = 1.5M Euro (2010)

ITER Construction Schedule

The ITER Project Team - Domestic Agencies

 90% of ITER components will be supplied "in-kind" by the Members through their Domestic Agencies

Itinerary of ITER Components

ITER Construction at Cadarache

ITER Site platform levelling complete and construction underway

ITER Site after Construction

References: Plasma Physics and Fusion

Teller, E. (ed.), *Fusion*, Academic Press, New York (1981)

Miyamoto, K., *Plasma Physics for Nuclear Fusion*, 2nd Edition, MIT Press, Cambridge, Mass. (1989)

Kadomtsev, B.B., *Tokamak Plasma: A Complex Physical System*, Institute of Physics Publishing, Bristol (1992)

Dendy, R.O. (ed.), *Plasma Physics: An Introductory Course*, Cambridge University Press, Cambridge (1993)

Sheffield, J., Rev. Mod. Phys. 66 1015 (1994)

ITER Technical Basis, ITER EDA Documentation Series No. 24, IAEA, Vienna (2002)

Wesson, J.A., *Tokamaks*, 3rd Edition, Oxford University Press, Oxford (2004)

http://www.iter.org - and associated links