EFT Mapping to UV Models

S. Dawson, BNL

July 1, 2022

Top Down or Bottoms up approach?

• Bottoms up: $L = L_{SM}$ -

$$L_{SM} + \Sigma \frac{c_i}{\Lambda^2} O_i^{d=6} + \Sigma \frac{c_i}{\Lambda^4} O_i^{d=8} + \dots$$

All BSM physics is in coefficient functions

(<i>LL</i>)(<i>LL</i>)			$(\bar{R}R)(\bar{R}R)$	$(LL)(\bar{R}R)$			
Qu	$(\vec{l}_p^{\prime}\gamma_{\mu}l_{\tau}^{\prime})(\vec{l}_s^{\prime}\gamma^{\mu}l_t^{\prime})$	Q_{ee}	$(\vec{e}_p' \gamma_\mu e_\tau') (\vec{e}_s' \gamma^\mu e_t')$	Q_{le}	$(\vec{l}_p^{\prime}\gamma_{\mu}l_{r}^{\prime})(\vec{e}_s^{\prime}\gamma^{\mu}e_t^{\prime})$		
$Q_{qq}^{(1)}$	$(\vec{q}_p^\prime \gamma_\mu q_r^\prime) (\vec{q}_s^\prime \gamma^\mu q_t^\prime)$	Q_{uu}	$(\bar{u}_p^\prime \gamma_\mu u_\tau^\prime)(\bar{u}_s^\prime \gamma^\mu u_t^\prime)$	Q_{lu}	$(l_p^0 \gamma_\mu l_r^\prime) (\bar{u}_s^\prime \gamma^\mu u_t^\prime)$		
$Q_{qq}^{(3)}$	$(\bar{q}_p^\prime \gamma_\mu \tau^I q_\tau^\prime) (\bar{q}_s^\prime \gamma^\mu \tau^I q_t^\prime)$	Q_{dd}	$(\bar{d}_p^y \gamma_\mu d_r^y) (\bar{d}_s^y \gamma^\mu d_t^y)$	Q_{ld}	$(l_p^{\prime} \gamma_{\mu} l_{\tau}^{\prime}) (d_x^{\mu} \gamma^{\mu} d_t^{\mu})$		
$Q_{lq}^{(1)}$	$(l_p^{\eta}\gamma_{\mu}l_{\tau}')(\bar{q}_s'\gamma^{\mu}q_t')$	Q_{cu}	$(\bar{e}_p^\prime \gamma_\mu e_r^\prime)(\bar{u}_s^\prime \gamma^\mu u_t^\prime)$	Q_{qe}	$(\bar{q}_p^\prime \gamma_\mu q_\tau^\prime) (\bar{e}_s^\prime \gamma^\mu e_t^\prime)$		
$Q_{lq}^{(3)}$	$(\bar{l}_p^{\prime} \gamma_{\mu} \tau^I l_{\tau}^{\prime}) (\bar{q}_s^{\prime} \gamma^{\mu} \tau^I q_t^{\prime})$	Q_{ed}	$(\bar{e}'_p \gamma_\mu e'_r)(\bar{d}'_s \gamma^\mu d'_t)$	$Q_{qu}^{(1)}$	$(\bar{q}_p^\prime \gamma_\mu q_r^\prime) (\bar{u}_s^\prime \gamma^\mu u_t^\prime)$		
		$Q_{ud}^{(1)}$	$(\bar{u}_p' \gamma_\mu u_r')(\bar{d}_s' \gamma^\mu d_t')$	$Q_{qu}^{(8)}$	$(\bar{q}_p^\prime \gamma_\mu \mathcal{T}^A q_r^\prime) (\bar{u}_s^\prime \gamma^\mu \mathcal{T}^A u_t^\prime)$		
		$Q_{ud}^{(8)}$	$(\bar{u}_p^\prime \gamma_\mu \mathcal{T}^A u_r^\prime) (\bar{d}_s^\prime \gamma^\mu \mathcal{T}^A d_t^\prime)$	$Q_{qd}^{(1)}$	$(\vec{q}_p' \gamma_\mu q_r')(\vec{d}_s' \gamma^\mu d_t')$		
				$Q_{qd}^{(8)}$	$(\bar{q}_p^\prime \gamma_\mu \mathcal{T}^A q_r^\prime) (\bar{d}_s^\prime \gamma^\mu \mathcal{T}^A d_t^\prime)$		
(LR	$(\bar{R}L)$ and $(\bar{L}R)(\bar{L}R)$	B-violating					
Q_{lodg}	$(\vec{l}_{p}^{'j}e_{r}^{\prime})(\vec{d}_{s}^{\prime}q_{t}^{\prime j})$	Q_{duq}	$\varepsilon^{\alpha\beta\gamma}\varepsilon_{jk}\left[\left(d_{p}^{\prime\alpha}\right)\right]$	${}^{T}Cu_{\tau}^{\prime\beta}\left[(q_{s}^{\prime\gamma j})^{T}Cl_{t}^{\prime k}\right]$			
$Q_{quqd}^{(1)}$	$(\bar{q}_p^{\prime j} u_{\tau}^{\prime}) \varepsilon_{jk} (\bar{q}_s^{\prime k} d_t^{\prime})$	Q_{qqu}	$\varepsilon^{\alpha\beta\gamma}\varepsilon_{jk}\left[(q_{p}^{\prime\alpha j})\right]$	$\left[(u_s^{\prime \gamma})^T \mathbb{C} e_t^{\prime} \right]$			
$Q_{quqd}^{(8)}$	$(\bar{q}_p^{\prime j}\mathcal{T}^A u_r^\prime)\varepsilon_{jk}(\bar{q}_s^{\prime k}\mathcal{T}^A d_t^\prime)$	Q_{qqq}	$\varepsilon^{\alpha\beta\gamma}\varepsilon_{jn}\varepsilon_{km}\left[(q_p^{\prime\alpha j})^T \mathbb{C}q_{\tau}^{\prime\beta k}\right]\left[(q_s^{\prime\gamma m})^T \mathbb{C}l_t^{\prime m}\right]$				
$Q_{logu}^{(1)}$	$(\vec{l}_p^{\prime j} e_r^{\prime}) \varepsilon_{jk} (\vec{q}_s^{\prime k} u_t^{\prime})$	Q_{duu}	$\varepsilon^{\alpha\beta\gamma}\left[(d_p'^{\alpha})^T C u_r'^{\beta}\right]\left[(u_x'^{\gamma})^T C e_t'\right]$				
$Q_{logu}^{(3)}$	$(\bar{l}_p^{\prime j}\sigma_{\mu\nu'}e_{\tau}')\varepsilon_{jk}(\bar{q}_s^{\prime k}\sigma^{\mu\nu'}u_t')$			1			

	X ³	φ^6 and $\varphi^4 D^2$		$\psi^2 \varphi^3$		
Q_G	$f^{ABC}G^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho}$	Q_{φ}	$(\varphi^{\dagger}\varphi)^{3}$	$Q_{e\varphi}$	$(\varphi^{\dagger}\varphi)(\overline{l}_{p}^{\prime}e_{r}^{\prime}\varphi)$	
Q_{C}	$f^{ABC} \tilde{G}^{A\nu}_{\mu} G^{B\rho}_{\nu} G^{C\mu}_{\rho}$	$Q_{\varphi \Box}$	$(\varphi^{\dagger}\varphi)_{\Box}(\varphi^{\dagger}\varphi)$	$Q_{u\varphi}$	$(\varphi^{\dagger}\varphi)(\vec{q}_{p}'u_{r}'\tilde{\varphi})$	
Q_W	$\varepsilon^{IJK}W^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$	$Q_{\varphi D}$	$(\varphi^{\dagger}D^{\mu}\varphi)^{*}(\varphi^{\dagger}D_{\mu}\varphi)$	$Q_{d\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{q}_{p}^{\prime}d_{r}^{\prime}\varphi)$	
$Q_{\widetilde{W}}$	$\varepsilon^{IJK} \widetilde{W}^{I\nu}_{\mu} W^{J\rho}_{\nu} W^{K\mu}_{\rho}$					
	$X^2 \varphi^2$	$\psi^2 X \varphi$		$\psi^2 \varphi^2 D$		
$Q_{\varphi G}$	$\varphi^{\dagger}\varphi G^{A}_{\mu\nu}G^{A\mu\nu}$	Q_{eW}	$(\bar{l}^{i}_{p}\sigma^{\mu\nu}e^{\prime}_{r})\tau^{I}\varphi W^{I}_{\mu\nu}$	$Q_{\varphi l}^{(1)}$	$(\varphi^{\dagger}i \overrightarrow{D}_{\mu} \varphi)(l_{p}^{p} \gamma^{\mu} l_{r}^{\prime})$	
$Q_{\varphi \overline{G}}$	$\varphi^{\dagger}\varphi \widetilde{G}^{A}_{\mu\nu}G^{A\mu\nu}$	Q_{eB}	$(l_p^{\prime}\sigma^{\mu\nu}e_{\tau}^{\prime})\varphi B_{\mu\nu}$	$Q_{\varphi l}^{(3)}$	$(\varphi^{\dagger}i\overleftrightarrow{D}^{I}_{\mu}\varphi)(l^{p}_{p}\tau^{I}\gamma^{\mu}l^{\prime}_{r})$	
$Q_{\varphi W}$	$\varphi^{\dagger}\varphi W^{I}_{\mu\nu}W^{I\mu\nu}$	Q_{uG}	$(\bar{q}_{p}^{\prime}\sigma^{\mu\nu}T^{A}u_{r}^{\prime})\tilde{\varphi}G^{A}_{\mu\nu}$	$Q_{\varphi e}$	$(\varphi^{\dagger}i \overrightarrow{D}_{\mu} \varphi)(\overrightarrow{e}_{p}^{\prime} \gamma^{\mu} e_{r}^{\prime})$	
$Q_{\varphi \overline{W}}$	$\varphi^{\dagger}\varphi \widetilde{W}^{I}_{\mu\nu}W^{I\mu\nu}$	Q_{uW}	$(\vec{q}_p^I \sigma^{\mu\nu} u_{\tau}^I) \tau^I \tilde{\varphi} W^I_{\mu\nu}$	$Q_{\varphi q}^{(1)}$	$(\varphi^{\dagger}i \overrightarrow{D}_{\mu} \varphi)(\overrightarrow{q}_{p} \gamma^{\mu} q_{r}')$	
$Q_{\varphi B}$	$\varphi^{\dagger}\varphi B_{\mu\nu}B^{\mu\nu}$	Q_{uB}	$(\vec{q}'_p \sigma^{\mu\nu} u'_r) \tilde{\varphi} B_{\mu\nu}$	$Q_{\varphi q}^{(3)}$	$(\varphi^{\dagger}i \overleftrightarrow{D}^{I}_{\mu} \varphi)(\vec{q}'_{p} \tau^{I} \gamma^{\mu} q'_{\tau})$	
$Q_{\varphi B}$	$\varphi^{\dagger}\varphi \widetilde{B}_{\mu\nu} B^{\mu\nu}$	Q_{dG}	$(\bar{q}_p^\prime \sigma^{\mu \nu} T^A d_r^\prime) \varphi G^A_{\mu \nu}$	$Q_{\varphi u}$	$(\varphi^{\dagger}i \overleftrightarrow{D}_{\mu} \varphi)(\overline{u}_{p}' \gamma^{\mu} u_{r}')$	
$Q_{\varphi WB}$	$\varphi^{\dagger} \tau^{I} \varphi W^{I}_{\mu\nu} B^{\mu\nu}$	Q_{dW}	$(\bar{q}_p^I \sigma^{\mu\nu} d_r^I) \tau^I \varphi W^I_{\mu\nu}$	$Q_{\varphi d}$	$(\varphi^{\dagger}i \overleftrightarrow{D}_{\mu} \varphi)(d_{p}^{\mu} \gamma^{\mu} d_{r}^{\mu})$	
$Q_{\varphi \overline{W}B}$	$\varphi^{\dagger}\tau^{I}\varphi \widetilde{W}^{I}_{\mu\nu}B^{\mu\nu}$	Q_{dB}	$(\vec{q}_p' \sigma^{\mu\nu} d_r') \varphi B_{\mu\nu}$	$Q_{\varphi ud}$	$i(\hat{\varphi}^{\dagger}D_{\mu}\varphi)(\bar{u}_{p}^{\prime}\gamma^{\mu}d_{r}^{\prime})$	

In general, 2499 operators at dimension-6

Many new fits (apologies to fit makers...)

- Fits have different assumptions, different sets of data included
- Probing TeV scale new physics

Fit includes top, Higgs, EWPO, diboson Compare results with and without top data C~1: New physics generated at tree level $C^{1}/(4\pi)^{2}$: New physics generated at loop level

At dim-6 only sensitive to C/ Λ^2

See Madigan talk, 2012.02779

Many global fits to data

- Precision on operators varies over many order of magnitude
- Exact values of couplings sensitive to assumptions
- Compare effects of $1/\Lambda^2$ expansion

Understanding uncertainties in UV matching

- The order of the expansion in $1/\Lambda^2$
- Radiative corrections
- The order of the UV matching (tree or loop)
- RGE effects

Study a few models as an example

Radiative corrections matter

- QCD is automated for SMEFT fits
- EW is case by case basis
 - Problem with EW corrections is that they typically introduce a dependence on many new operators beyond that of LO fits

Simple examples

- When there is only 1 new high scale particle, finding the operators generated at tree and loop level is a solved problem at dimension-6
- Examples:
 - Scalar singlet S
 - Scalar Y=0 triplet ζ
 - U(1) Z', B
 - Gauge vector triplet, W
 - Top partner, T
 - Lepton Y=-1/2 doublet fermions (N,E)

* Table on next page includes possible contributions generated from dim-5 operators

1711.10391

Patterns (table is incomplete!)

• Hope: Measuring a pattern of coefficients will give information about UV model

	Ο _{φD}	O _{∲□}	Ο _{φW}	Ο _{φB}	О _{фWB}	O _{dφ}	O _{uφ}	O _{eφ}	O qq ⁽¹⁾	O _{qq} ⁽³⁾
S		\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark		
ζ	\checkmark	\checkmark			\checkmark	\checkmark	\checkmark	\checkmark		
Z'	\checkmark	\checkmark				\checkmark	\checkmark	\checkmark	\checkmark	
W	\checkmark	\checkmark				\checkmark	\checkmark	\checkmark		\checkmark
Т							\checkmark			
(N,E)								\checkmark		

Example: Spontaneously broken Higgs singlet model without Z₂ Symmetry

 $V(\phi, S) = V_{SM}(\phi) + V_{\phi S}(\phi, S) + V_{S}(S)$ $V_{\phi S}(\phi, S) = \frac{a_{1}}{2}(\phi^{\dagger}\phi)S + \frac{a_{2}}{2}(\phi^{\dagger}\phi)S^{2}$ $V_{S}(S) = b_{1}S + \frac{b_{2}}{2}S^{2} + \frac{b_{3}}{3}S^{3} + \frac{b_{4}}{4}S^{4}$

- Models without Z₂ symmetry motived by desire to explain electroweak baryogenesis
- (They typically prefer negative a₁, b₃ and lighter H)
- Can set tan β =0 in this case (because we have included all possible terms: this just amounts to redefining parameters)

Can be studied in terms of mass of H, coupling of h to SM fermions (cos θ), coupling of Hhh, b₃, b₄

Singlet continued

• Tree level matching:

$$\frac{v^2}{\Lambda^2} C_{\phi \Box} = -\frac{1}{2} \tan^2 \theta$$
$$C_{\phi} = -C_{\phi \Box} (\tan \theta \frac{b_3}{3v} - b_2)$$
$$\delta \lambda = -\frac{a_1^2}{b_2}$$

 $O_{\phi\Box} = (\phi^{\dagger}\phi)\partial^{2}(\phi^{\dagger}\phi)$ $O_{\phi} = (\phi^{\dagger}\phi)^{3}$

Coefficients predicted in terms of UV model parameters

S. Dawson

Information about Singlet model from fits

- Including RGE running has significant effect on numerical fits
- Fit is done to arbitrary C_{ϕ} and $C_{\phi\Box}$, but model points lie on colored lines
- Uncertainty in combining C_{φ} and $C_{\varphi \Box}$

2007.01296

Singlet One-loop matching

• Does it matter for interpretation?

- Many more coefficients generated at 1-loop
 - Most of them are proportional to tree level $C_{\Phi\square}$
 - 1-loop contributions to C_{Φ} and $C_{\Phi\square}$ complicated

1811.08878

$$V(\Phi,S) \sim \frac{m_{\xi}}{2} \Phi^{\dagger} \Phi S + \frac{\kappa}{2} \Phi^{\dagger} \Phi S^2 + t_S S + \frac{M^2}{2} S^2 + \frac{m_{\zeta}}{3} S^3 + \frac{\lambda_S}{4} S^4$$

Singlet one-loop matching

In principle, one loop matching requires 2-loop RGEs

$$V(\Phi,S) \sim \frac{m_{\xi}}{2} \Phi^{\dagger} \Phi S + \frac{\kappa}{2} \Phi^{\dagger} \Phi S^2 + t_S S + \frac{M^2}{2} S^2 + \frac{m_{\zeta}}{3} S^3 + \frac{\lambda_S}{4} S^4$$

Uncertainties at dimension-8?

$$A \sim A_{SM} + \frac{C_6}{\Lambda^2} A_6 + \frac{C_8}{\Lambda^4} A_8$$

$$d\sigma \sim |A_{SM}|^2 + 2Re(A_{SM} A_6^*) \frac{C_6}{\Lambda^2} + \left(\frac{C_6^2}{\Lambda^4} \mid A_6 \mid^2 + 2Re(A_{SM} A_8^*) \frac{C_8}{\Lambda^4}\right)$$

- Expanding a dimension-6 amplitude to O(1/ Λ^2) and squaring amplitude generates 1/ Λ^4 terms
- The interference of the SM with the dimension-8 amplitude also gives $1/\Lambda^4$ terms
- Agnostic approach, look at effects of generic dimension-8 operators
- Model specific approach, consider effects in typical models

T VLQ model

• Model is simple: add charge 2/3 vector-like Top partner T_L , T_R

 $L \sim -\lambda_t \overline{q}_L \tilde{H} t_R - \lambda_T \overline{q}_L \tilde{H} T_R - m_T \overline{T}_L \tilde{H} T_R + h.c.$

• At tree level, generate 3 operators

 $\frac{v^2}{\Lambda^2}C^{(1)}_{\phi q} = \frac{1}{2}(\sin\theta_L)^2$

 $Y_t C_{t\phi} = 2C_{\phi q,33}^{(1)} = -2C_{\phi q,33}^{(3)}$ Note blind direction

• At 1-loop, generate (among others) $O_{\Phi G}$ (effective ggH vertex)

TVLQ at dimension-6

TVLQ at dimension-8

- At dimension-8, generate corrections to top Yukawa, but also momentum dependent contributions
- Can we see these effects in tails of distributions?

TVLQ at dimension-8 (ttH production)

Dimension-8 effects very small in this example

2HDM at dimension-8

- Add 2 Higgs doublets, Φ_1 and Φ_2 , with VEVs v_1 and v_2
- Rotate to Higgs basis (H_1 and H_2) where only H_1 has VEV
- Consider usual fermion couplings to H_1 and H_2
- Assume H₂ is heavy and integrate it out using covariant derivative expansion
- At dimension-6 generate corrections to Yukawa-like interactions, $O_{\phi f_{\!\!\!/}}$ and to Higgs self coupling, C_{Φ}

$$L_6 = rac{C_H}{M^2} (H^{\dagger}H)^3 + \left[rac{C_{dH}}{M^2} (H^{\dagger}H) \overline{q}_L H d_R + rac{C_{uH}}{M^2} (H^{\dagger}H) \overline{q}_L \tilde{H} u_R + hc
ight]$$

New operators at dim-6 change Higgs-fermion Yukawas and Higgs tri-linear, but don't generate momentum dependence

2HDM to dim-8

• At dim-8, new coefficients generate hVV interactions along with momentum dependent operators contributing to hh, VV production

Higgs Inverse problem from an e⁺e⁻ perspective

• Take precision expected on SMEFT couplings at ILC

Singlet model with M_s=2.8 TeV

Type-II 2HDM with M_H=600 GeV, tan β =7

Uncertainties in UV matching to SMEFT

- Radiative corrections
 - QCD automatized
 - EW still on a case by case basis
- RGE running has significant effect on interpretations
- 1-loop matching automatized
 - But need 2-loop RGE for consistency
- Dimension-8 effects
 - Jury is still out