Hints of New Physics and EFT: Flavor

Anders Eller Thomsen

₽ UNIVERSITÄT BERN

AEC ALBERT EINSTEIN CENTER FOR FUNDAMENTAL PHYSICS Based on work with A. Greljo and A. Palavrić

Workgroup 1 meeting, 1 July 2022

Probing high-scale new physics

1

Probing high-scale new physics

Flavor assumptions in EFT fits discussed at LHC EFT topical meeting on flavor assumptions (January, 2022)

Symmetries: Matter fields:

$SU(3)_c \times SU(2)_L \times U(1)_Y \times Poincaré$ $q_i, u_i, d_i, \ell_i, e_i, H$

Symmetries: $SU(3)_c \times SU(2)_L \times U(1)_Y \times Poincaré$ Matter fields: $q_i, \ u_i, \ d_i, \ \ell_i, \ e_i, \ H$

 \hookrightarrow Flavor symmetry: $G_F = U(3)_q \times U(3)_u \times U(3)_d \times U(3)_\ell \times U(3)_e$

- Symmetries: $SU(3)_c \times SU(2)_L \times U(1)_Y \times Poincaré$ Matter fields: $q_i, \ u_i, \ d_i, \ \ell_i, \ e_i, \ H$
- $\hookrightarrow \mathsf{Flavor symmetry:} \qquad G_F = \mathsf{U}(3)_q \times \mathsf{U}(3)_u \times \mathsf{U}(3)_d \times \mathsf{U}(3)_\ell \times \mathsf{U}(3)_e$

The Yukawa couplings break $G_F \to U(1)_B \times U(1)_{L_e} \times U(1)_{L_{\mu}} \times U(1)_{L_{\tau}}$:

$$\mathcal{L}_{\text{yuk}} = -y_u \bar{q} \tilde{H} u - y_d \bar{q} H d - y_e \bar{\ell} H e + \text{H.c.}$$

- Symmetries: $SU(3)_c \times SU(2)_L \times U(1)_Y \times Poincaré$ Matter fields: $q_i, \ u_i, \ d_i, \ \ell_i, \ e_i, \ H$
- $\hookrightarrow \mathsf{Flavor symmetry:} \qquad G_F = \mathsf{U}(3)_q \times \mathsf{U}(3)_u \times \mathsf{U}(3)_d \times \mathsf{U}(3)_\ell \times \mathsf{U}(3)_e$

The Yukawa couplings break $G_F \to U(1)_B \times U(1)_{L_e} \times U(1)_{L_{\mu}} \times U(1)_{L_{\tau}}$:

$$\mathcal{L}_{yuk} = -y_u \bar{q} \tilde{H} u - y_d \bar{q} H d - y_e \bar{\ell} H e + H.c.$$

But G_F identifies equivalent theories

$$\left\{y_u, y_d, y_e\right\} ~\sim~ \left\{U_q y_u U_u^{\dagger}, ~U_q y_d U_d^{\dagger}, ~U_\ell y_e U_e^{\dagger}\right\}, \qquad \text{for}~ U \in G_F$$

54 parameters \longrightarrow 13 *physical* parameters

The flavor puzzle

Flavor of the SM:

The flavor puzzle

Flavor of the SM:

- Is the structure in the flavor sector meaningful?
- How does potential new physics couple to flavor?
- What is (if any) the flavor symmetry of the SM?

The flavor puzzle

Flavor of the SM:

- Is the structure in the flavor sector meaningful?
- How does potential new physics couple to flavor?
- What is (if any) the flavor symmetry of the SM?

 y_t is the leading (only non-perturbative) breaking of G_F in the SM:

$$y_u \sim \begin{pmatrix} & & \\ & - & - \end{pmatrix}$$
: $G_F \rightarrow U(2)_q \times U(2)_u \times U(3)_d \times U(3)_\ell \times U(3)_e \times U(1)_B$

Flavor in the SMEFT

Constructed from the same fields and symmetries as \mathcal{L}_{SM}

 $\dim O = 5$: 1 classes, 12 operators

dim O = 6: 59 classes, 2499 operators ($\Delta B = 0$)

e.g. $C_{uu}^{psrt}(\bar{u}_p\gamma_\mu u_r)(\bar{u}_s\gamma^\mu u_t)$ → 45 parameters

Flavor in the SMEFT

$$\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \sum_{O} \frac{C_{O}}{\Lambda^{\dim O - 4}} O$$

Constructed from the same fields and symmetries as $\mathcal{L}_{\mbox{\tiny SM}}$

dim O = 5: 1 classes, 12 operators dim O = 6: 59 classes, 2499 operators ($\Delta B = 0$)

Chart the space of SMEFT with flavor symmetries

e.g. $C_{\mu\mu}^{psrt}(\bar{u}_p\gamma_{\mu}u_r)(\bar{u}_s\gamma^{\mu}u_t)$ 45 parameters

Greljo, Palavric, AET [2203.09561] and also Faroughy et al. [2005.05366]

- Organization in perturbative spurion expansion, reduces the number of (relevant) operators
- Reduction in number of parameters makes global SMEFT fits possible
- Differentiation of SMEFT in universality classes pointing to different NP

4

NP with MFV

NP with MFV assumption can reside at the TeV-scale, but it is very (too?) restrictive D'Ambrosio *et al.* [hep-ph/0207036]

SME	FT $O(1)$ terms	Lepton sector									
(dim-6, $\Delta B = 0$)		MFV _L	U(3) _V	$U(2)^{2} \times U(1)^{2}$	U(2) ²	U(2) _V	U(1) ⁶	U(1) ³	No symm.		
	MFV _Q										
Oursels	$U(2)^2 \times U(3)_d$										
Quark	$U(2)^3 \times U(1)_{d_3}$										
Sector	U(2) ³										
	No symmetry										

- 28 hypothesis for the flavor symmetries
- Systematic chart from MFV to anarchy

 $\mathsf{U}(3)\supset\mathsf{U}(2)\times\mathsf{U}(1)\supset\mathsf{U}(2)\supset\mathsf{U}(1)$

Spurions (minimal set) introduced to reproduce SM masses and mixings

SME	FT $O(1)$ terms	Lepton sector									
(dim-6, $\Delta B = 0$)		MFV _L	U(3) _V	$U(2)^{2} \times U(1)^{2}$	U(2) ²	U(2) _V	U(1) ⁶	U(1) ³	No symm.		
	MFV _Q										
Oursele	$U(2)^2 \times U(3)_d$										
Quark	$U(2)^3 \times U(1)_{d_3}$										
Sector	U(2) ³										
	No symmetry										

- Work from the Warsaw basis
- Construct the operators order by order in the spurions
- Generally:
 - Flavor-symmetric operators are relevant for EW/top/Higgs physics
 - Spurions are relevant for flavor physics (CKM is a result of spurions)

But also examples of non-trivial interplay Bruggisser et al. [2101.07273]

SMEFT $O(1)$ terms Lepton sector																	
(dim-6, $\Delta B = 0$)		MF	VL	U(:	3) _V	U(2) ²	$^{2} \times U(1)^{2}$	U(2) ²	U(:	2) _V	U(1)6	U(1) ³	No s	ymm.
	MFV _Q	41	6	45	9	59	6	62	9	67	13	81	6	93	18	207	132
0	$U(2)^2 \times U(3)_d$	72	10	78	15	95	10	100	15	107	21	122	10	140	28	281	169
Quark	$U(2)^{3} \times U(1)_{d_{3}}$	86	10	92	15	111	10	116	12	123	21	140	10	158	28	305	175
Sector	U(2) ³	93	17	100	23	118	17	124	23	132	30	147	17	168	38	321	191
	No symmetry	703	570	734	600	756	591	786	621	818	652	813	612	906	705	1350	1149

The $\mathcal{O}(1)$ terms in the spurion expansion are expected to be the relevant ones for EW/top/Higgs fits.

SME	SMEFT $\mathcal{O}(1)$ terms Lepton sector																
(dim-6, $\Delta B = 0$)		MF	VL	U(:	3) _V	U(2) ²	$^2 \times U(1)^2$	U(2) ²	U(:	2) _V	U(1)6	U(1) ³	No s	ymm.
	MFV _Q	41	6	45	9	59	6	62	9	67	13	81	6	93	18	207	132
Quark sector	$U(2)^2 \times U(3)_d$	72	10	78	15	95	10	100	15	107	21	122	10	140	28	281	169
	$U(2)^{3} \times U(1)_{d_{3}}$	86	10	92	15	111	10	116	12	123	21	140	10	158	28	305	175
	U(2) ³	93	17	100	23	118	17	124	23	132	30	147	17	168	38	321	191
	No symmetry	703	570	734	600	756	591	786	621	818	652	813	612	906	705	1350	1149

The $\mathcal{O}(1)$ terms in the spurion expansion are expected to be the relevant ones for EW/top/Higgs fits.

The symmetry of the SM broken by y_t (also in suggestion by LHC EFT WG)

- Discriminates third family. Good description of e.g. *b* anomalies
 - Allows generic LFUV. No cLFV

Example: SMEFT with $U(2)^3 \times U(1)_{d_3}$ symmetry

Flavor symmetry $G = U(2)^3 \times U(1)_{d_3}$ with quark fields

$$q = \begin{bmatrix} q^a \sim (\mathbf{2}, \mathbf{1}, \mathbf{1})_0 \\ q_3 \sim (\mathbf{1}, \mathbf{1}, \mathbf{1})_0 \end{bmatrix}, \qquad u = \begin{bmatrix} u^a \sim (\mathbf{1}, \mathbf{2}, \mathbf{1})_0 \\ u_3 \sim (\mathbf{1}, \mathbf{1}, \mathbf{1})_0 \end{bmatrix}, \qquad d = \begin{bmatrix} d^a \sim (\mathbf{1}, \mathbf{1}, \mathbf{2})_0 \\ d_3 \sim (\mathbf{1}, \mathbf{1}, \mathbf{1})_1 \end{bmatrix}.$$

The spurions break G completely, and contains 9 physical parameters (incl. 1 phase)

 $V_q \sim (\mathbf{2}, \mathbf{1}, \mathbf{1})_0, \qquad \Delta_u \sim (\mathbf{2}, \overline{\mathbf{2}}, \mathbf{1})_0, \qquad \Delta_d \sim (\mathbf{2}, \mathbf{1}, \overline{\mathbf{2}})_0 \qquad X_b \sim (\mathbf{1}, \mathbf{1}, \mathbf{1})_{-1}.$

*Similar analyses available for all the symmetries

Example: SMEFT with $U(2)^3 \times U(1)_{d_3}$ symmetry

Flavor symmetry $G = U(2)^3 \times U(1)_{d_3}$ with quark fields

$$q = \begin{bmatrix} q^a \sim (\mathbf{2}, \mathbf{1}, \mathbf{1})_0 \\ q_3 \sim (\mathbf{1}, \mathbf{1}, \mathbf{1})_0 \end{bmatrix}, \qquad u = \begin{bmatrix} u^a \sim (\mathbf{1}, \mathbf{2}, \mathbf{1})_0 \\ u_3 \sim (\mathbf{1}, \mathbf{1}, \mathbf{1})_0 \end{bmatrix}, \qquad d = \begin{bmatrix} d^a \sim (\mathbf{1}, \mathbf{1}, \mathbf{2})_0 \\ d_3 \sim (\mathbf{1}, \mathbf{1}, \mathbf{1})_1 \end{bmatrix}.$$

The spurions break G completely, and contains 9 physical parameters (incl. 1 phase)

 $V_a \sim (\mathbf{2}, \mathbf{1}, \mathbf{1})_0, \qquad \Delta_u \sim (\mathbf{2}, \mathbf{\overline{2}}, \mathbf{1})_0, \qquad \Delta_d \sim (\mathbf{2}, \mathbf{1}, \mathbf{\overline{2}})_0 \qquad X_b \sim (\mathbf{1}, \mathbf{1}, \mathbf{1})_{-1}.$ $(\bar{q}q)(\bar{q}q)$ Examples from operator basis $\mathcal{O}(1): (\bar{q}_a q^b)(\bar{q}_b q^a), (\bar{q}_a q_3)(\bar{q}_3 q^a), \quad \mathcal{O}(V): (\bar{q}_a q_3)(\bar{q} V_a q^a), \text{ H.c.},$ (2.33) $\mathcal{O}(V^2)$: $(\bar{q}_a V_a^{\dagger} q)(\bar{q} V_a q^a)$. $(\bar{u}u)(\bar{u}u)$ $\mathcal{O}(1): (\bar{u}_a u^b)(\bar{u}_b u^a), \quad (\bar{u}_a u_3)(\bar{u}_3 u^a), \quad \mathcal{O}(\Delta V): (\bar{u}_a u_3)(\bar{u} \Delta^{\dagger}_u V_a u^a), \quad \text{H.c.}$ (2.34) $(\bar{d}d)(\bar{d}d)$ $\mathcal{O}(1): (\bar{d}_a d^b)(\bar{d}_b d^a), \quad (\bar{d}_a d_3)(\bar{d}_3 d^a), \qquad \mathcal{O}(\Delta V X): (\bar{d}_a X_b d_3)(\bar{d}\Delta_d^\dagger V_a d^a), \quad \text{H.c.}$ (2.35)

*Similar analyses available for all the symmetries

The SMEFTflavor package

In[14]:= CountingTable["lep:U2diag"]

Out[14]=

- SMEFTflavor is a Mathematica package to derive operator bases for flavor symmetries
- It is possible to implement custom flavor scenarios
- Example: U(2)_V lepton symmetry with Δ ~ 3 spurion

lep:U	2diag	0[1]	0[Δ l]		
$\psi^2 H^3$	0eH	2	2	1	1	
$\psi^2 XH$	Oe(B,W)	4	4	2	2	
$\psi^2 H^2 D$	OHl(1,3)	4		2		
	0He	2		1		
(LL) (LL)	011	5		3		
(RR) (RR)	0ee	3		2		
(LL) (RR)	Ole	6	1	5	2	
Tot	tal	26	7	16	5	

The SMEFTflavor package

In[14]:= CountingTable["lep:U2diag"]

Out[14]=

- SMEFTflavor is a Mathematica package to derive operator bases for flavor symmetries
- It is possible to implement custom flavor scenarios
- Example: $U(2)_V$ lepton symmetry with $\Delta \sim 3$ spurion

lep:U	2diag	0[1]	0[Δ l]		
$\psi^2 H^3$	0eH	2	2	1	1	
$\psi^2 XH$	Oe(B,W)	4	4	2	2	
$\psi^2 H^2 D$	OHl(1,3)	4		2		
	OHe	2		1		
(LL) (LL)	011	5		3		
(RR) (RR)	0ee	3		2		
(LL) (RR)	Ole	6	1	5	2	
Tot	tal	26	7	16	5	

Explicit operator bases, e.g. $O_{\ell e} = (\bar{\ell} \gamma_{\mu} \ell) (\bar{e} \gamma_{\mu} e)$:

<code>In[13]:= OperatorBasis["lep:U2diag"]["Ole", Spur["△l"]] // TableForm // OpForm</code>

Out[13]//OpForm=

$$\begin{split} &(\text{Operator}[\{\overline{\texttt{l12}}_a,\texttt{l12}^b,\overline{\texttt{e12}}_b,\texttt{e12}^c\},\texttt{Spur}[\triangle\texttt{l}^d],\texttt{CGS}[\mathsf{T}_b^{da}]]+\texttt{H.c.})\\ &\texttt{Operator}[\{\overline{\texttt{l12}}_a,\texttt{l12}^b,\overline{\texttt{e12}}_c,\texttt{e12}^c\},\texttt{Spur}[\triangle\texttt{l}^d],\texttt{CGS}[\mathsf{T}_b^{da}]]\\ &\texttt{Operator}[\{\overline{\texttt{l12}}_a,\texttt{l12}^b,\overline{\texttt{e3}},\texttt{e3}\},\texttt{Spur}[\triangle\texttt{l}^c],\texttt{CGS}[\mathsf{T}_b^{ca}]]\\ &(\texttt{Operator}[\{\overline{\texttt{l3}},\texttt{l12}^a,\overline{\texttt{e12}}_b,\texttt{e3}\},\texttt{Spur}[\triangle\texttt{l}^c],\texttt{CGS}[\mathsf{T}_a^{cb}]]+\texttt{H.c.})\\ &\texttt{Operator}[\{\overline{\texttt{l3}},\texttt{l3},\overline{\texttt{e12}}_a,\texttt{e12}^b\},\texttt{Spur}[\triangle\texttt{l}^c],\texttt{CGS}[\mathsf{T}_b^{ca}]] \end{split}$$

Problem: Generic Yukawas seem to contain many parameters in, e.g. $U(2)^3$:

$$Y_{u,d} = \begin{bmatrix} a_1^{u,d} \Delta_{u,d} + a_2^{u,d} \Delta_u \Delta_u^{\dagger} \Delta_{u,d} + \dots & b_1^{u,d} V_q + b_2^{u,d} \Delta_u \Delta_u^{\dagger} V_q + \dots \\ c_1^{u,d} V_q^{\dagger} \Delta_{u,d} + \dots & d_1^{u,d} + d_2^{u,d} V_q^{\dagger} V_q + \dots \end{bmatrix}$$

Problem: Generic Yukawas seem to contain many parameters in, e.g. $U(2)^3$:

$$Y_{u,d} = \begin{bmatrix} a_1^{u,d} \Delta_{u,d} + a_2^{u,d} \Delta_u \Delta_u^{\dagger} \Delta_{u,d} + \dots & b_1^{u,d} V_q + b_2^{u,d} \Delta_u \Delta_u^{\dagger} V_q + \dots \\ c_1^{u,d} V_q^{\dagger} \Delta_{u,d} + \dots & d_1^{u,d} + d_2^{u,d} V_q^{\dagger} V_q + \dots \end{bmatrix}$$

Solution: Additional freedom in the $G_F/G_{U(2)^3}$ flavor space:

$$U_{q} = \exp \begin{bmatrix} 0 & \lambda_{1}^{q}V_{q} + \lambda_{2}^{q}\Delta_{u}\Delta_{u}^{\dagger}V_{q} + \dots \\ -(\lambda_{1}^{q})^{*}V_{q}^{\dagger} - (\lambda_{2}^{q})^{*}V_{q}^{\dagger}\Delta_{u}\Delta_{u}^{\dagger} - \dots & 0 \end{bmatrix}$$
$$U_{u,d} = \exp \begin{bmatrix} 0 & \lambda_{1}^{u,d}\Delta_{u,d}^{\dagger}V_{q} + \dots \\ -(\lambda_{1}^{u,d})^{*}V_{q}^{\dagger}\Delta_{u,d} - \dots & 0 \end{bmatrix} \text{ explicitly } G_{U(2)^{3}} \text{ covariant}$$

Problem: Generic Yukawas seem to contain many parameters in, e.g. $U(2)^3$:

$$Y_{u,d} = \begin{bmatrix} a_1^{u,d} \Delta_{u,d} + a_2^{u,d} \Delta_u \Delta_u^{\dagger} \Delta_{u,d} + \dots & b_1^{u,d} V_q + b_2^{u,d} \Delta_u \Delta_u^{\dagger} V_q + \dots \\ c_1^{u,d} V_q^{\dagger} \Delta_{u,d} + \dots & d_1^{u,d} + d_2^{u,d} V_q^{\dagger} V_q + \dots \end{bmatrix}$$

Solution: Additional freedom in the $G_F/G_{U(2)^3}$ flavor space:

$$U_{q} = \exp \begin{bmatrix} 0 & \lambda_{1}^{q}V_{q} + \lambda_{2}^{q}\Delta_{u}\Delta_{u}^{\dagger}V_{q} + \dots \\ -(\lambda_{1}^{q})^{*}V_{q}^{\dagger} - (\lambda_{2}^{q})^{*}V_{q}^{\dagger}\Delta_{u}\Delta_{u}^{\dagger} - \dots & 0 \end{bmatrix}$$
$$U_{u,d} = \exp \begin{bmatrix} 0 & \lambda_{1}^{u,d}\Delta_{u,d}^{\dagger}V_{q} + \dots \\ -(\lambda_{1}^{u,d})^{*}V_{q}^{\dagger}\Delta_{u,d} - \dots & 0 \end{bmatrix} \text{ explicitly } G_{U(2)^{3}} \text{ covariant}$$

Going to e.g. down-aligned Yukawas (10 parameters)

Redefined spurions

$$Y_{u,d} \quad \xrightarrow{U_{q,u,d}} \quad Y'_u = \begin{bmatrix} \Delta'_u & V'_q \\ 0 & y'_t \end{bmatrix}, \qquad Y'_d = \begin{bmatrix} \Delta'_d & 0 \\ 0 & y'_b \end{bmatrix}$$

Problem: Generic Yukawas seem to contain many parameters in, e.g. $U(2)^3$:

$$Y_{u,d} = \begin{bmatrix} a_1^{u,d} \Delta_{u,d} + a_2^{u,d} \Delta_u \Delta_u^{\dagger} \Delta_{u,d} + \dots & b_1^{u,d} V_q + b_2^{u,d} \Delta_u \Delta_u^{\dagger} V_q + \dots \\ c_1^{u,d} V_q^{\dagger} \Delta_{u,d} + \dots & d_1^{u,d} + d_2^{u,d} V_q^{\dagger} V_q + \dots \end{bmatrix}$$

Solution: Additional freedom in the $G_F/G_{U(2)^3}$ flavor space:

$$U_{q} = \exp \begin{bmatrix} 0 & \lambda_{1}^{q}V_{q} + \lambda_{2}^{q}\Delta_{u}\Delta_{u}^{\dagger}V_{q} + \dots \\ -(\lambda_{1}^{q})^{*}V_{q}^{\dagger} - (\lambda_{2}^{q})^{*}V_{q}^{\dagger}\Delta_{u}\Delta_{u}^{\dagger} - \dots & 0 \end{bmatrix}$$
$$U_{u,d} = \exp \begin{bmatrix} 0 & \lambda_{1}^{u,d}\Delta_{u,d}^{\dagger}V_{q} + \dots \\ -(\lambda_{1}^{u,d})^{*}V_{q}^{\dagger}\Delta_{u,d} - \dots & 0 \end{bmatrix} \text{ explicitly } G_{U(2)^{3}} \text{ covariant}$$

Going to e.g. down-aligned Yukawas (10 parameters)

Redefined spurions

$$Y_{u,d} \quad \xrightarrow{U_{q,u,d}} \quad Y'_u = \begin{bmatrix} \Delta'_u & V'_q \\ 0 & y'_t \end{bmatrix}, \qquad Y'_d = \begin{bmatrix} \Delta'_d & 0 \\ 0 & y'_b \end{bmatrix}$$

No redundancy in the SMEFT basis once minimal Yukawas are chosen

- Flavor structure of NP will leave imprints in the SMEFT
- TeV scale NP must posses flavor structure to remain viable
- Operator basses made available for 28 flavor scenarios: ready-for-use in phenomenological studies
- Operator bases for other scenarios can be determined with

https://github.com/aethomsen/SMEFTflavor Grelio. Palavric. AET [2203.09561]