SMEFT Analysis of mw

2204.05260: Emanuele Bagnaschi, John Ellis, MM, Ken Mimasu, Veronica Sanz, Tevong You

Maeve Madigan University of Cambridge

The W boson mass at CDF I

CDF Collaboration, Science 376 (2022) no. 6589 $\longrightarrow m_W = 80433.5 \pm 9.4 \text{ MeV}$

Maeve Madigan | SMEFT Analysis of m_w

SM electroweak fit 1803.01853 J. Haller et. al $m_W = 80354 \pm 7 \,\,\mathrm{MeV}$

 \searrow m_W as predicted from a SM fit to electroweak precision data, not including measurements of m_W

A discrepancy of ~ 7σ

The W boson mass

CDF Collaboration, *Science* 376 (2022) no. 6589

SM electroweak fit 1803.01853 J. Haller et. al

m _W [MeV]							
80200	80300	804	-00	8			
,							
1 + S.T fit	80378 ± 24						
1 electroweak fit	80354 ± 7						
 1	80361 ± 7	H	Indirect w/o	o n			
orld Avg. (w/ CDF)	80411 ± 8		⊢●⊣				
orld Avg. (w/o CDF)	80370 ± 12						
DF II	80434 ± 9		H				
Cb	80354 ± 32						
LAS	80370 ± 19						
	80375 ± 23						
P2	80376 ± 33						
Stat. uncertainty Total uncertainty				1			

The W boson mass

	m _W [MeV	']		
80200	80300	804	100	8
'1 ∓ 3,1 III I I				
	80378 + 24			
I electroweak fit	80354 + 7			
´	80361 ± 7		Indirect w/o	r
orld Avg. (w/ CDF)	80411 ± 8		⊢●⊣	
orld Avg. (w/o CDF)	80370 ± 12			
DF II	80434 ± 9		 	
Cb	80354 ± 32			
LAS	80370 ± 19			
II	80375 ± 23			
P2	80376 ± 33	F		
Stat. uncertainty Total uncertainty				

The W boson mass

World average of direct m_W measurements including CDF

SM electroweak fit 1803.01853 J. Haller et. al

	m_W [MeV]]		
80200	80300	804	-00	8
,, , , ,,,				
1 + S T fit	80378 ± 24			
1 electroweak fit	80354 ± 7			
 1	80361 ± 7	HH	Indirect w/o	n
orld Avg. (w/ CDF)	80411 ± 8		⊢●⊣	
orld Avg. (w/o CDF)	80370 ± 12			
DF II	80434 ± 9			
Cb	80354 ± 32			
LAS	80370 ± 19			
	80375 ± 23			
P2	80376 ± 33			
Stat. uncertainty Total uncertainty				

Can new physics beyond the SM mitigate the m_W tension?

Maeve Madigan | SMEFT Analysis of m_W

The SMEFT

Can new physics beyond the SM mitigate the m_W tension?

Using the **SMEFT**, we can address this question in a **model-independent** manner, assuming heavy new physics:

$$\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \frac{C^{(5)}}{\Lambda} \mathcal{O}^{(5)} + \mathbf{Z}$$

 $\sum_{i} \frac{C_i^{(6)}}{\Lambda^2} \mathcal{O}_i^{(6)} + \dots$

 $E \ll \Lambda$

The SMEFT

Can new physics beyond the SM mitigate the m_W tension?

Using the **SMEFT**, we can address this question in a **model-independent** manner, assuming heavy new physics:

$$\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \frac{C^{(5)}}{\Lambda} \mathcal{O}^{(5)} + \sum_{n=1}^{\infty} \mathcal{O}^{(5)} + \sum_{n=1}^{$$

Is this new physics consistent with other data?

 $\sum_{\cdot} \frac{C_i^{(6)}}{\Lambda^2} \mathcal{O}_i^{(6)} + \dots$

 $E \ll \Lambda$

The SMEFT

Can new physics beyond the SM mitigate the m_W tension?

Using the **SMEFT**, we can address this question in a **model-independent** manner, assuming heavy new physics:

$$\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \frac{C^{(5)}}{\Lambda} \mathcal{O}^{(5)} + \mathbf{Z}$$

Is this new physics consistent with other data?

We will incorporate the m_W data into a **global fit**, analysing the consistency of new physics with existing Higgs, diboson and electroweak precision data.

Our analysis

precision data using Fitmaker 2012.02779 Ellis et. al

 \sim now including CDF II and LHCb measurements of m_W

Dimension-6 operators in the Warsaw basis, at linear order only

• Flavour universal $SU(3)^5 \longrightarrow 20$ operators

Fitmaker <u>https://gitlab.com/kenmimasu/fitrepo</u>

• An update of our previous SMEFT analysis of Higgs, diboson and electroweak

$$\sigma = \sigma_{SM} + \sum_{i} \frac{C_i}{\Lambda^2} \sigma_i + \mathcal{O}(\Lambda^{-4})$$

Electroweak precision observables include:

Precision measurements at the Z resonance

$$\{\Gamma_{Z}, \sigma_{\text{had.}}^{0}, R_{l}^{0}, A_{FB}^{l}, A_{I}, R_{b}^{0}, R_{c}^{0}, A_{FB}^{0}, A_{FB}^{0}, A_{FB}^{0}, A_{b}, A_{c}\}.$$

Phys. Rept. 427 (2006) 257–454, hep-ex/0509008

See 2204.05260 for details of the diboson and Higgs datasets

Maeve Madigan | SMEFT Analysis of m_W

ATLAS Eur. Phys. J. C 78 (2018), arXiv:1701.07240

LHCb JHEP 01 (2022) 036, [arXiv:2109.01113].

Electroweak input parameters: $\{\hat{\alpha}_{EW}, \hat{M}_Z, \hat{G}_F\}$

$$\frac{\delta m_W^2}{\hat{m}_W^2} = -\frac{\sin 2\theta_w}{\cos 2\theta_w} \frac{v^2}{4\Lambda^2} \left(\frac{\cos \theta_w}{\sin \theta_w} C_{HD} + \frac{\sin \theta_w}{\cos \theta_w} \left(4C_{Hl}^{(3)} - 2C_{ll} \right) + 4C_{HWB} \right)$$

where $m_W^2 = \hat{m}_W^2 + \delta m_W^2$, \hat{m}_W derived from input parameters in the SM.

 $\hat{\alpha}_{EW}^{-1} = 127.95$ $\hat{G}_F = 1.16638 \times 10^{-5} \text{ GeV}^{-2}$ $\hat{m}_Z = 91.1876 \,\,{\rm GeV}$

 m_W

Electroweak input parameters: $\{\hat{\alpha}_{EW}, \hat{M}_Z, \hat{G}_F\}$

$$\frac{\delta m_W^2}{\hat{m}_W^2} = -\frac{\sin 2\theta_w}{\cos 2\theta_w} \frac{v^2}{4\Lambda^2} \left(\frac{\cos \theta_w}{\sin \theta_w} C_{HD} + \frac{\sin \theta_w}{\cos \theta_w} \left(4C_{Hl}^{(3)} - 2C_{ll} \right) + 4C_{HWB} \right)$$

where $m_W^2 = \hat{m}_W^2 + \delta m_W^2$, \hat{m}_W derived from input parameters in the SM.

4 operators can induce a shift in m_W at linear order:

$$\mathcal{O}_{HWB} \equiv H^{\dagger} \tau^{I} H W^{I}_{\mu\nu} B^{\mu\nu},$$
$$\mathcal{O}_{\ell\ell} \equiv \left(\bar{\ell}\gamma_{\mu}\ell\right) \left(\bar{\ell}\gamma^{\mu}\ell\right),$$

We neglect possible measurement bias in extracting m_W in the SMEFT Bjørn, Trott, 1606.06502

 $\hat{\alpha}_{EW}^{-1} = 127.95$ $\hat{G}_F = 1.16638 \times 10^{-5} \text{ GeV}^{-2}$ $\hat{m}_{Z} = 91.1876 \,\,\mathrm{GeV}$

$$\mathcal{O}_{HD} \equiv \left(H^{\dagger}D^{\mu}H\right)^{\star} \left(H^{\dagger}D_{\mu}H\right) ,$$
$$\mathcal{O}_{H\ell}^{(3)} \equiv \left(H^{\dagger}i\overset{\leftrightarrow}{D}_{\mu}^{I}H\right) \left(\bar{\ell}\tau^{I}\gamma^{\mu}\ell\right)$$

Individual SMEFT constraints

Maeve Madigan | SMEFT Analysis of m_W

$$\frac{\delta m_W^2}{m_W^2} = -\frac{\sin 2\theta_w}{\cos 2\theta_w} \frac{v^2}{4\Lambda^2} \left(\frac{\cos \theta_w}{\sin \theta_w} C_{HD} + \frac{\sin \theta_w}{\cos \theta_w} \left(4C_{Hl}^{(3)} - 2C_{ll} \right) + \frac{1}{2} \left(\frac{\cos \theta_w}{\cos \theta_w} C_{HD} + \frac{\sin \theta_w}{\cos \theta_w} \left(\frac{\cos \theta_w}{\cos \theta_w} - \frac{1}{2} C_{HD} \right) \right) \right)$$

 $SU(3)^5$: EWPO + Diboson + Higgs

Marginalised SMEFT constraints

Maeve Madigan | SMEFT Analysis of m_W

*Only the most relevant operators are shown here.

All others are included in the marginalisation.

Grey: SMEFT fit, excluding direct measurements of m_W

Red: SMEFT fit, including direct measurements of m_W

 C_{HWB} C_{HD} $C_{II} \ C^{(3)}_{HI}$ C_{HWB}, C_{HD} C_{HWB}, C_{II} $C_{HWB}, C_{HI}^{(3)}$ C_{HD}, C_{II} $C_{HD}, C_{HI}^{(3)}$ $C_{II}, C_{HI}^{(3)'}$ C_{HWB}, C_{HD}, C_{II} $C_{HWB}, C_{HD}, C_{HI}^{(3)}$ $C_{HWB}, C_{II}, C_{HI}^{(3)}$ $C_{HD}, C_{II}, C_{HI}^{(3)}$ $C_{HWB}, C_{HD}, C_{II}, C_{HI}^{(3)}$ 20-parameter fit

80200

 C_{HD} is the least constrained of the one-param fits

Fits including C_{HD} show compatibility with the CDF m_W measurement

80200

 C_{HD} is the least constrained of the one-param fits

Fits including C_{HD} show compatibility with the CDF m_W measurement

Fits including C_{HD}, C_{ll} indicate a flat direction

 C_{HWB} C_{HD} $C_{II} \\ C_{HI}^{(3)}$ C_{HWB}, C_{HD} C_{HWB}, C_{II} $C_{HWB}, C_{HI}^{(3)}$ C_{HD}, C_{II} $C_{HD}, C_{HI}^{(3)}$ $C_{II}, C_{HI}^{(3)}$ C_{HWB}, C_{HD}, C_{II} $C_{HWB}, C_{HD}, C_{HI}^{(3)}$ $C_{HWB}, C_{II}, C_{HI}^{(3)}$ $C_{HD}, C_{II}, C_{HI}^{(3)}$ $C_{HWB}, C_{HD}, C_{II}, C_{HI}^{(3)}$ 20-parameter fit

80200

SMEFT constraints

A flat direction between C_{HD}, C_{ll} is lifted by m_W

Both the 2 and 4-parameter fits show C_{HD} always bounded away from zero

We see good compatibility between the fits with/without m_W

Constraints from CKM unitarity

The SMEFT is constrained by the consistency of β - decay data with CKM unitarity:

$$\Delta_{CKM} = 2 \frac{v^2}{\Lambda^2} \left[C_{Hq}^{(3)} - C_{H\ell}^{(3)} + \right]$$

where
$$\Delta_{CKM} \equiv |V_{ud}|^2 + |V_{us}|^2 - 1$$

2204.04559 M. Blennow et. al 2204.08440 V. Cirigliano et. al

$$C_{\ell}^{0} + C_{\ell\ell} - C_{\ell q}^{(3)}$$

Constraints from CKM unitarity

The SMEFT is constrained by the consistency of β - decay data with CKM unitarity:

$$\Delta_{CKM} = 2 \frac{v^2}{\Lambda^2} \left[C_{Hq}^{(3)} - C_{H\ell}^{(3)} + \right]$$

where
$$\Delta_{CKM} \equiv |V_{ud}|^2 + |V_{us}|^2$$
 -

2204.04559 M. Blennow et. al 2204.08440 V. Cirigliano et. al

Recall $C_{Hl}^{(3)}, C_{ll}, C_{HD}, C_{HWB}$

contribute to m_W

Constraints from CKM unitarity

The SMEFT is constrained by the consistency of β - decay data with CKM unitarity:

$$\Delta_{CKM} = 2 \frac{v^2}{\Lambda^2} \left[C_{Hq}^{(3)} - C_{H\ell}^{(3)} + \right]$$

where
$$\Delta_{CKM} \equiv |V_{ud}|^2 + |V_{us}|^2$$
 -

Measurements of $0^+ \rightarrow 0^+$ nucleon transitions and kaon decays:

 $\Delta_{CKM} = -0.0015 \pm 0.0007$

2204.04559 M. Blennow et. al 2204.08440 V. Cirigliano et. al

Recall $C_{Hl}^{(3)}, C_{ll}, C_{HD}, C_{HWB}$

contribute to m_W

Breakdown of constraints

Measurements of Δ_{CKM} or m_W can be used to break the flat direction in C_{HD} , C_{ll} parameterspace

Diboson and Higgs data are crucial for constraining C_{HWB}

The combined 5-parameter fit (dashed) shows C_{HD} always bounded away from zero

m_W in the SMEFT with ΔCKM

No longer find a degeneracy between C_{HD}, C_{ll}

Indirect m_W predictions are compatible with the m_W world average in all fits involving C_{HD}

 C_{HWB} C_{HD} $C_{II} \ C^{(3)}_{HI}$ C_{HWB}, C_{HD} C_{HWB}, C_{II} $C_{HWB}, C_{HI}^{(3)}$ C_{HD}, C_{II} $C_{HD}, C_{HI}^{(3)}$ $C_{II}, C_{HI}^{(3)}$ C_{HWB}, C_{HD} C_{HWB}, C_{HD} C_{HWB}, C_{II}, C C_{HD}, C_{II}, C_{H} C_{HWB}, C_{HD} 20-parame 8(

m _W [MeV]									
0200	80300		8040	00	8050	00			
eter fit	► 80411 ± 8 ●			•	1				
$, C_{II}, C_{HI}^{(3)}$	80412 ± 7		_ ⊢ <mark>⊦</mark>	0 - '	*				
3)'' //	80411 ± 7		- I	<mark>●</mark>	*				
, ~(3) ~ HI	80390 ± 6		H						
$C_{\mu\nu}^{(3)}$	80411 ± 7								
C ₁₁	80304 ± 3 80411 + 7								
	80411 ± 7 80287 ± 5			•••					
	80411 ± 7								
	80387 ± 6	HeH	H						
	80385 ± 6	HeH	H						
	80409 ± 7		 <mark>_</mark>	━┥└───					
	80380 ± 5	Here	н		- SMEET 202	22+Acr			
	80370 ± 4				- SMEFT+ Δ_c	_{. KM} , no l			
	80408 ± 7		• •	▶	$- m_W$ world a	avg.			
	80385 + 5		Hel		SM				
									

Probing single-field extensions of the SM

Single-field extensions of the SM matched to the SMEFT at tree-level, 1711.10391 de Blas et. al

Model	C_{HD}	C_{ll}	$C_{Hl}^{(3)}$	$C_{Hl}^{(1)}$	C_{He}	$C_{H\Box}$	$C_{\tau H}$	C_{tH}	C_{bH}	
S_1		-1								
\sum			$\frac{1}{16}$	$\frac{3}{16}$			$\frac{y_{\tau}}{4}$			
Σ_1			$\frac{1}{16}$	$-\frac{3}{16}$			$\frac{y_{\tau}}{8}$			$C^{(1)}$
N			$-\frac{1}{4}$	$\frac{1}{4}$						e.g. N: $\frac{\mathcal{O}_{Hl}}{\Lambda 2} =$
			$-\frac{1}{4}$	$-\frac{1}{4}$			$\frac{y_{\tau}}{2}$			11-
B_1	1					$-\frac{1}{2}$	$-\frac{y_{\tau}}{2}$	$-\frac{y_t}{2}$	$-\frac{y_b}{2}$	
B	-2						$-y_{\tau}$	$-y_t$	$-y_b$	
[]	$-2\left(\frac{1}{M_{\Xi}}\right)^2$					$\frac{1}{2} \left(\frac{1}{M_{\Xi}}\right)^2$	$y_{\tau} \left(\frac{1}{M_{\Xi}}\right)^2$	$\left y_t \left(\frac{1}{M_{\Xi}} \right)^2 \right $	$\left y_b \left(\frac{1}{M_{\Xi}} \right)^2 \right $	
W_1	$-\frac{1}{4}$					$-\frac{1}{8}$	$-\frac{y_{\tau}}{8}$	$-\frac{y_t}{8}$	$-\frac{y_b}{8}$	
W	$\frac{1}{2}$					$-\frac{1}{2}$	$-y_{\tau}$	$-y_t$	$-y_b$	

5 models shift m_W in the positive direction:

$$\frac{\delta m_W^2}{m_W^2} = -\frac{\sin 2\theta_w}{\cos 2\theta_w} \frac{v^2}{4\Lambda^2} \left(\frac{\cos \theta_w}{\sin \theta_w} C_{HD} + \frac{\sin \theta_w}{\cos \theta_w} \left(4C_{Hl}^{(3)} - 2C_{ll} \right) + 4C_{HWB} \right)$$

Maeve Madigan | SMEFT Analysis of m_W

 N, E, B, Ξ, W_1

Probing single-field extensions of the SM

Single-field extensions of the SM matched to the SMEFT at tree-level, 1711.10391 de Blas et. al

Model	C_{HD}	C_{ll}	$C_{Hl}^{(3)}$	$C_{Hl}^{(1)}$	C_{He}	$C_{H\Box}$	$C_{ au H}$	C_{tH}	C_{bH}	Model	Spin	SU(3)	SU(2)
S_1		-1											
\sum			$\frac{1}{16}$	$\frac{3}{16}$			$\frac{y_{\tau}}{4}$						
Σ_1			$\frac{1}{16}$	$-\frac{3}{16}$			$\frac{y_{\tau}}{8}$						
N			$-\frac{1}{4}$	$\frac{1}{4}$						N	$\frac{1}{2}$	1	1
E			$-\frac{1}{4}$	$-\frac{1}{4}$			$\frac{y_{\tau}}{2}$				$\frac{1}{2}$	1	1
B_1	1					$-\frac{1}{2}$	$-\frac{y_{ au}}{2}$	$-\frac{y_t}{2}$	$-\frac{y_b}{2}$				
B	-2						$-y_{ au}$	$-y_t$	$-y_b$	B	1	1	1
[I]	$-2\left(\frac{1}{M_{\Xi}}\right)^2$					$\frac{1}{2} \left(\frac{1}{M_{\Xi}}\right)^2$	$y_{\tau}\left(\frac{1}{M_{\Xi}}\right)^2$	$y_t \left(\frac{1}{M_{\Xi}}\right)^2$	$\left[y_b \left(\frac{1}{M_{\Xi}} \right)^2 \right]$	[I]	0	1	3
W_1	$-\frac{1}{4}$					$-\frac{1}{8}$	$-\frac{y_{\tau}}{8}$	$-\frac{y_t}{8}$	$-\frac{y_b}{8}$	W_1	1	1	3
W	$\frac{1}{2}$					$-\frac{1}{2}$	$-y_{ au}$	$-y_t$	$-y_b$				

5 models shift m_W in the positive direction:

$$\frac{\delta m_W^2}{m_W^2} = -\frac{\sin 2\theta_w}{\cos 2\theta_w} \frac{v^2}{4\Lambda^2} \left(\frac{\cos \theta_w}{\sin \theta_w} C_{HD} + \frac{\sin \theta_w}{\cos \theta_w} \left(4C_{Hl}^{(3)} - 2C_{ll} \right) + 4C_{HWB} \right)$$

Maeve Madigan | SMEFT Analysis of m_W

 N, E, B, Ξ, W_1

Probing single-field extensions of the SM

Model	Pull	Best-fit mass	1- σ mass	$2-\sigma$ mass	$1-\sigma$ coupling ²
		(TeV)	range (TeV)	range (TeV)	range
W_1	6.4	3.0	[2.8, 3.6]	[2.6, 3.8]	[0.09, 0.13]
B	6.4	8.6	[8.0, 9.4]	[7.4, 10.6]	[0.011, 0.016]
Ξ	6.4	2.9	[2.8, 3.1]	[2.7, 3.2]	[0.011, 0.016]
N	5.1	4.4	[4.1, 5.0]	[3.8, 5.8]	[0.040, 0.060]
E	3.5	5.8	[5.1, 6.8]	[4.6, 8.5]	$\left[0.022, 0.039 \right]$

Maeve Madigan | SMEFT Analysis of m_W

Constraints at 68% and 95% CL, assuming a coupling of *g*=1

Conclusions

New physics parametrised by the dimension-6 SMEFT can account for a large enough shift in m_W without significant tension with other electroweak precision, Higgs and diboson data.

 m_W can be accommodated within several single-field extensions of the SM with new particles whose masses are in the TeV range for couplings of order 1

Low-energy measurements e.g. Δ_{CKM} provide complementary information on the SMEFT operators constrained by m_W

Maeve Madigan | SMEFT Analysis of m_W

$$C_{HWB}, C_{HD}, C_{ll}, C_{Hl}^{(3)}$$

$$N, E, B, \Xi, W_1$$

Thank you for listening!

S, T parameters

Relation to the electroweak oblique parameters *S*, *T*:

$$\frac{v^2}{\Lambda^2}C_{HWB} = \frac{g_1g_2}{16\pi}S$$

$$\frac{v^2}{\Lambda^2}C_{HD} = -\frac{g_1^2 g_2^2}{2\pi(g_1^2 + g_2^2)}T$$

SM + S, T electroweak fit: greater compatibility with the W mass world average

S, T parameters

Clear pull away from the SM in the T direction

Fit to m_W data (purple) remains compatible with the fit to all other data (yellow)

 $\Delta m_W \in [0.04\%, 0.08\%]$

