

Validation of method to measure aperture margin between IR6 and TCTs with non-nominal phase advance

MD #7008

Cédric Hernalsteens, Christoph Wiesner, Daniel Wollmann

rMPP meeting on MD1 2022 approval

Method and objectives

> Method to validate the retraction of the TCT in IR5 with respect to the TCDQ / TCSP

- Validate correct protection of the TCT from direct impact in case of asynchronous dump
- Uses a long closed-orbit bump extending from IR6 to IR5 for Beam 2 with circulating beams
- Provides aperture margin measurement
- Validates that the phase advance requirement from MKD to TCTH in IR5 is satisfied (must be < 30 degrees)

Objectives of the MD

- Extend results from MD #2186 (2018) where the method was tested for a nominal optics configuration
- Validate the method with intentionally detuned phase advance between IR6 and IR5. Two configurations:
 - 1. Using the MQTs in Arc 56 to detune the phase advance
 - 2. Using the MQs in Arc 56 (and Arc 45) to change the phase advance while limiting the beta-beating wave

MD description

1. Simulate MKD kicked trajectory with a closed bump between IR6 and IR5 (based on the model)

- Correct the orbit outside the IR6 to IR5 region to remove leakage
- Assuming the absence of significant perturbation between the 2 correctors opening the bump and the TCDQ we obtain the "true" trajectories with circulating beams
- 2. Increase the bump strength so that the TCDQ/TCDSP defines the aperture
- 3. Measure the bump shape and beam position at TCTPH.4R5.B2
- 4. Perform BBA with TCTPH.4R5.B2 to measure

Validate the method in non-nominal optics conditions and quantify the retraction between TCDQ/TCSP and IR5 TCT

Requested machine and beam parameters

Time required per MD [h]	8h
Beams required	Beam 2 only
Beam energy [GeV]	6.8 TeV
Optics (injection, squeezed, special)	Collisions ($\beta^* = 60$ cm, tele-index = 1, nominal crossing angle)
Bunch intensity and number of bunches	3 pilots distributed in the B2 ring (buckets 1, 8911, 17851)
Optics change [yes/no]	Yes. Phase advance detuning in S56
Orbit change [yes/no]	Yes. Closed 4 corrector-bump from IP6 to IP5
Collimation change [yes/no]	Yes.
RF system change [yes/no]	No.
Feedback changes [yes/no]	Yes. Orbit feedback to be switched off at flat top.
What else will be changed?	ADT excitation of pilots (as for loss maps).

Long-orbit bump

> Open the bump upstream of MKD and close downstream of TCTPH in IR5

- MCBH.11R6.B2, MCBCH.9R6.B2, MCBCH.9L5.B2, MCBCH.7L5.B2
- Correct the leakage in the rest of the ring manually using YASP and a few correctors L5 (feedback off)
- Increase amplitude in steps of 0.5 sigma up to 2 sigma then in steps of 0.1 sigma until reaching 3 sigma (ensuring that the TCDQ / TCSP defines the aperture TCDQ@7.3 and TCP@5.0)

Long-orbit bump

Open the bump upstream of MKD and close downstream of TCTPH in IR5

- MCBH.11R6.B2, MCBCH.9R6.B2, MCBCH.9L5.B2, MCBCH.7L5.B2
- Correct the leakage in the rest of the ring manually using YASP and a few correctors L5 (feedback off)
- Increase amplitude in steps of 0.5 sigma up to 2 sigma then in steps of 0.1 sigma until reaching 3 sigma (ensuring that the TCDQ / TCSP defines the aperture TCDQ@7.3 and TCP@5.0)

Long-orbit bump

Already tested in 2018

Need to (re)-create the knob prior to the MD

Optics detuning

> Is the method able to reveal insufficient retraction in case of non-nominal optics?

- Nominal horizontal phase advance from MKD to horizontal TCT : 28 degrees
- Voluntarily increase the phase advance to increase the trajectory excursion at the TCT, in turn reducing the effective aperture margin
- Squeezed optics (beta* = 60cm) with tele-index = 1 to be used

Optics detuning

> Using the trim quadrupoles in S56 (MQTs) at constant tune

- Use kqtf.a56b2, kqtd.a56b2 to change the horizontal phase advance to 58 degrees (constant vertical phase advance) using about half maximum strengths (236A) for the MQT-F
- Keep the tunes constant using the tune "tele-knobs" (i.e., trim quads in ATS arcs not used)
- Will proceed in small trim steps, with the tune feedback acting on the tele-knobs
 - TCTPH.4R5.B2

Optics detuning

Using the main quadrupoles in Arc 45 and 56 (MQs) at constant tune

- Non-nominal configuration to provide a similar phase advance detuning but a reduced beta-beating
- Use the the MQs in Arc 56 to detune the horizontal phase advance (at constant vertical phase advance)
- Use the MQs in Arc 45 to compensate for the tune
- Proceed in small steps with the tune feedback active to correct residual tune drift
- On the 4 circuits, maximum change of 1% to obtain a 30 degrees phase advance detuning

Variable	Final Value	Initial Value
kqd.a56	-8.68995e-03	-8.70476e-03
kqf.a56	8.62071e-03	8.70330e-03
kqd.a45	-8.72009e-03	-8.70476e-03
kqf.a45	8.78219e-03	8.70330e-03

Needs from / impact on collimation

Collimation settings remain nominal...

In the spirit of a "true" validation method

… except

- TCTPH.4R5.B2
 - Need to measure aperture and perform BBA
 - Will remain at nominal position (assuming aperture margin is present) when starting the measurement
 - Will be (gently) opened if aperture margin is found to be absent
- Limits will be opened for TCP.C6L7.B2 (horizontal), TCDQ, TCSP and TCTPH.4R5.B2

> TCDQ / TCSP will become primaries

 Low intensity, must ensure slow and controlled transverse blow-up from the ADT to avoid excessive losses on Q4 from TCDQ and TCSP

Step-by-step

Focus on machine protection aspects

A. Preparation

1. Open collimator limits

Horizontal TCT in IR5 (TCTPH.4R5.B2), TCP.C6L7.B2, TCDQ B2 and TCSP B2

2. Mask interlocks

- Force Beam Setup Flag to true using the "Setup beam" equation
- TCDQ IR6
- TCDQ BETS IR6
- Beam excursion in IR6
- Loss maps (all IR, BPM/BLM/BCCM)
- BPM (below minimum intensity)
- 3. Switch off orbit feedback

B. Nominal optics

- 1. Create the long orbit bump and increase the amplitude to 3 sigma
 - Monitor and correct, if required, the leakage in the ring
 - Measure the closed-orbit (globally) and with the DOROS BPM at the horizontal TCT
- 2. Blow up the horizontal emittance of the first pilot until losses are observed on the TCDQ/TCSP
- 3. Perform the beam-based alignment of TCTPH.4R5.B2 in steps of 15 μ m

C. Non-nominal optics I (using the MQTs in S56)

1. Restore configuration

- Move the TCT back to nominal position
- Remove the orbit bump, verify and correct the orbit if needed
- 2. Detune the optics using the kqtf.a56b2 and kqtd.a56b2 knobs
 - Uncorrected horizontal tune change would be 8e-2
 - Proceed in steps equivalent to tune change of a few 1e-3, wait for the tune feedback to react
- 3. Create the long orbit bump and increase the amplitude to 3 sigma
 - Monitor and correct, if required, the leakage in the ring
 - Measure the closed-orbit (globally) and with the DOROS BPM at the horizontal TCT
- 4. Blow up the horizontal emittance of the first pilot until losses are observed on the TCDQ/TCSP
- 5. Perform the beam-based alignment of TCTPH.4R5.B2 in steps of 15 μ m

D. Non-nominal optics II (using the MQs in S45-56)

1. Restore configuration

- Move the TCT back to nominal position
- Remove the orbit bump, verify and correct the orbit if needed
- Revert the trims on the MQTs in steps (see C.)

2. Detune the optics using the kqf/d.a56 and kqf/d.a45 knobs

Proceed in 10 steps, wait for the tune feedback to react

3. Create the long orbit bump and increase the amplitude to 3 sigma

- Monitor and correct, if required, the leakage in the ring
- Measure the closed-orbit (globally) and with the DOROS BPM at the horizontal TCT
- 4. Blow up the horizontal emittance of the first pilot until losses are observed on the TCDQ/TCSP
- 5. Perform the beam-based alignment of TCTPH.4R5.B2 in steps of 15 μ m

1. Restore orbit and optics configuration

- Move the TCT back to nominal position
- Remove the orbit bump, verify and correct the orbit if needed
- Revert the trims on the MQs in steps (see D.)
- 2. Verify that the orbit and tunes are back to nominal settings
- 3. Unmask all masked interlocks and forced flags
- 4. Restore the collimator limits

Conclusion

> MD implies configuration changes for the collimation, optics and orbits. Mitigations

- Low intensity (3 pilots)
- Long orbit bump already tested in 2018
- > Collimation changes limited to strict minimum (nominally only the horizontal TCT will move)

Measurement of the retraction of the TCT in IR5 with respect to the TCDQ / TCSP with circulating beams

> Validate the method with intentionally detuned phase advance between IR6 and IR5

home.cern